Usefulness of morphometric image analysis with Sirius Red to assess interstitial fibrosis after renal transplantation from uncontrolled circulatory death donors.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 04 2020
23 04 2020
Historique:
received:
17
10
2019
accepted:
19
03
2020
entrez:
25
4
2020
pubmed:
25
4
2020
medline:
1
12
2020
Statut:
epublish
Résumé
Early interstitial fibrosis (IF) correlates with long-term renal graft dysfunction, highlighting the need for accurate quantification of IF. However, the currently used Banff classification exhibits some limitations. The aim of our study was to precisely describe the progression of IF after renal transplantation using a new morphometric image analysis method relying of Sirius Red staining. The morphometric analysis we developed showed high inter-observer and intra-observer reproducibility, with ICC [95% IC] of respectively 0.75 [0.67-0.81] (n = 151) and 0.88 [0.72-0.95] (n = 21). We used this method to assess IF (mIF) during the first year after the kidney transplantation from 66 uncontrolled donors after circulatory death (uDCD). Both mIF and interstitial fibrosis (ci) according to the Banff classification significantly increased the first three months after transplantation. From M3 to M12, mIF significantly increased whereas Banff classification failed to highlight increase of ci. Moreover, mIF at M12 (p = 0.005) correlated with mean time to graft function recovery and was significantly associated with increase of creatininemia at M12 and at last follow-up. To conclude, the new morphometric image analysis method we developed, using a routine and cheap staining, may provide valuable tool to assess IF and thus to evaluate new sources of grafts.
Identifiants
pubmed: 32327683
doi: 10.1038/s41598-020-63749-3
pii: 10.1038/s41598-020-63749-3
pmc: PMC7181605
doi:
Substances chimiques
Azo Compounds
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6894Références
Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).
pubmed: 10580071
doi: 10.1056/NEJM199912023412303
pmcid: 10580071
Savoye, E., Tamarelle, D., Chalem, Y., Rebibou, J.-M. & Tuppin, P. Survival benefits of kidney transplantation with expanded criteria deceased donors in patients aged 60 years and over. Transplantation 84, 1618–1624 (2007).
pubmed: 18165773
doi: 10.1097/01.tp.0000295988.28127.dd
pmcid: 18165773
Bayat, S., Kessler, M., Briançon, S. & Frimat, L. Survival of transplanted and dialysed patients in a French region with focus on outcomes in the elderly. Nephrol. Dial. Transplant. 25, 292–300 (2010).
pubmed: 19749147
doi: 10.1093/ndt/gfp469
pmcid: 19749147
Wijnen, R. M. et al. Outcome of transplantation of non-heart-beating donor kidneys. Lancet 345, 1067–1070 (1995).
pubmed: 7715337
doi: 10.1016/S0140-6736(95)90815-3
pmcid: 7715337
Cho, Y. W., Terasaki, P. I., Cecka, J. M. & Gjertson, D. W. Transplantation of kidneys from donors whose hearts have stopped beating. N. Engl. J. Med. 338, 221–225 (1998).
pubmed: 9435327
doi: 10.1056/NEJM199801223380403
pmcid: 9435327
Weber, M., Dindo, D., Demartines, N., Ambühl, P. M. & Clavien, P.-A. Kidney transplantation from donors without a heartbeat. N. Engl. J. Med. 347, 248–255 (2002).
pubmed: 12140300
doi: 10.1056/NEJMoa020274
pmcid: 12140300
Brook, N. R., Waller, J. R. & Nicholson, M. L. Nonheart-beating kidney donation: current practice and future developments. Kidney Int. 63, 1516–1529 (2003).
pubmed: 12631369
doi: 10.1046/j.1523-1755.2003.00854.x
pmcid: 12631369
Koffman, G. & Gambaro, G. Renal transplantation from non-heart- beating donors: a review of the European experience. J. Nephrol. 16, 334–341 (2003).
pubmed: 12832731
pmcid: 12832731
Arias-Diaz, J., Alvarez, J., del Barrio, M. R. & Balibrea, J. L. Non-heart-beating donation: current state of the art. Transplant. Proc. 36, 1891–1893 (2004).
pubmed: 15518687
doi: 10.1016/j.transproceed.2004.08.057
pmcid: 15518687
Alonso, A. et al. Renal transplantation from non-heart-beating donors: a single-center 10-year experience. Transplant. Proc. 37, 3658–3660 (2005).
pubmed: 16386496
doi: 10.1016/j.transproceed.2005.09.104
pmcid: 16386496
Gagandeep, S. et al. Expanding the donor kidney pool: utility of renal allografts procured in a setting of uncontrolled cardiac death. Am. J. Transplant. 6, 1682–1688 (2006).
pubmed: 16827871
doi: 10.1111/j.1600-6143.2006.01386.x
pmcid: 16827871
Kokkinos, C. et al. Outcome of kidney transplantation from nonheart-beating versus heart-beating cadaveric donors. Transplantation 83, 1193–1199 (2007).
pubmed: 17496535
doi: 10.1097/01.tp.0000261710.53848.51
pmcid: 17496535
Sánchez-Fructuoso, A. I. et al. Victims of cardiac arrest occurring outside the hospital: a source of transplantable kidneys. Ann. Intern. Med. 145, 157–164 (2006).
pubmed: 16880457
doi: 10.7326/0003-4819-145-3-200608010-00003
pmcid: 16880457
Snoeijs, M. G. et al. Kidneys from donors after cardiac death provide survival benefit. J. Am. Soc. Nephrol. 21, 1015–1021 (2010).
pubmed: 20488954
pmcid: 2900965
doi: 10.1681/ASN.2009121203
Viglietti, D. et al. Kidney allograft fibrosis after transplantation from uncontrolled circulatory death donors. Transplantation 99, 409–415 (2015).
pubmed: 25222117
doi: 10.1097/TP.0000000000000228
pmcid: 25222117
Lamb, K. E., Lodhi, S. & Meier-Kriesche, H.-U. Long-term renal allograft survival in the United States: a critical reappraisal. Am. J. Transplant. 11, 450–462 (2011).
pubmed: 20973913
doi: 10.1111/j.1600-6143.2010.03283.x
pmcid: 20973913
Haas, M. Chronic allograft nephropathy or interstitial fibrosis and tubular atrophy: what is in a name? Curr. Opin. Nephrol. Hypertens. 23, 245–250 (2014).
pubmed: 24626060
doi: 10.1097/01.mnh.0000444811.26884.2d
pmcid: 24626060
Cosio, F. G., El Ters, M., Cornell, L. D., Schinstock, C. A. & Stegall, M. D. Changing Kidney Allograft Histology Early Posttransplant: Prognostic Implications of 1-Year Protocol Biopsies. Am. J. Transplant. 16, 194–203 (2016).
pubmed: 26274817
doi: 10.1111/ajt.13423
pmcid: 26274817
Hart, A. et al. OPTN/SRTR 2015 Annual Data Report: Kidney. Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
pubmed: 28052609
pmcid: 5527691
doi: 10.1111/ajt.14124
Stegall, M. D., Cornell, L. D., Park, W. D., Smith, B. H. & Cosio, F. G. Renal Allograft Histology at 10 Years After Transplantation in the Tacrolimus Era: Evidence of Pervasive Chronic Injury. Am. J. Transplant. https://doi.org/10.1111/ajt.14431 (2017).
Solez, K. et al. Banff ’05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am. J. Transplant 7, 518–526 (2007).
pubmed: 17352710
doi: 10.1111/j.1600-6143.2006.01688.x
pmcid: 17352710
Racusen, L. C. & Regele, H. The pathology of chronic allograft dysfunction. Kidney Int. Suppl. S27–32, https://doi.org/10.1038/ki.2010.419 (2010).
Pascual, J., Pérez-Sáez, M. J., Mir, M. & Crespo, M. Chronic renal allograft injury: early detection, accurate diagnosis and management. Transplant. Rev. 26, 280–290 (2012).
doi: 10.1016/j.trre.2012.07.002
Sellarés, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).
pubmed: 22081892
doi: 10.1111/j.1600-6143.2011.03840.x
pmcid: 22081892
Heemann, U. & Lutz, J. Pathophysiology and treatment options of chronic renal allograft damage. Nephrol. Dial. Transplant. 28, 2438–2446 (2013).
pubmed: 23625970
doi: 10.1093/ndt/gft087
pmcid: 23625970
Maluf, D. G. et al. Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction. Am. J. Transplant. 14, 1152–1163 (2014).
pubmed: 24698514
pmcid: 4377109
doi: 10.1111/ajt.12696
Torres, I. B., Moreso, F., Sarró, E., Meseguer, A. & Serón, D. The Interplay between inflammation and fibrosis in kidney transplantation. BioMed Res. Int. 2014, 750602 (2014).
pubmed: 24991565
pmcid: 4065724
Serón, D. et al. Reliability of chronic allograft nephropathy diagnosis in sequential protocol biopsies. Kidney Int. 61, 727–733 (2002).
pubmed: 11849416
doi: 10.1046/j.1523-1755.2002.00174.x
pmcid: 11849416
Melk, A., Schmidt, B. M. W., Vongwiwatana, A., Rayner, D. C. & Halloran, P. F. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am. J. Transplant. 5, 1375–1382 (2005).
pubmed: 15888044
doi: 10.1111/j.1600-6143.2005.00846.x
pmcid: 15888044
Serón, D. et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation 69, 1849–1855 (2000).
pubmed: 10830221
doi: 10.1097/00007890-200005150-00019
pmcid: 10830221
Yilmaz, S. et al. Protocol core needle biopsy and histologic Chronic Allograft Damage Index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J. Am. Soc. Nephrol. 14, 773–779 (2003).
pubmed: 12595515
doi: 10.1097/01.ASN.0000054496.68498.13
pmcid: 12595515
Serón, D. et al. Early protocol renal allograft biopsies and graft outcome. Kidney Int. 51, 310–316 (1997).
pubmed: 8995748
doi: 10.1038/ki.1997.38
pmcid: 8995748
Pape, L. et al. Computer-assisted quantification of fibrosis in chronic allograft nephropaty by picosirius red-staining: a new tool for predicting long-term graft function. Transplantation 76, 955–958 (2003).
pubmed: 14508360
doi: 10.1097/01.TP.0000078899.62040.E5
pmcid: 14508360
Grimm, P. C. et al. Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J. Am. Soc. Nephrol. 14, 1662–1668 (2003).
pubmed: 12761269
doi: 10.1097/01.ASN.0000066143.02832.5E
pmcid: 12761269
Roufosse, C. et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation, https://doi.org/10.1097/TP.0000000000002366 (2018).
doi: 10.1097/TP.0000000000002366
pubmed: 30028786
pmcid: 30028786
Marcussen, N., Olsen, T. S., Benediktsson, H., Racusen, L. & Solez, K. Reproducibility of the Banff classification of renal allograft pathology. Inter- and intraobserver variation. Transplantation 60, 1083–1089 (1995).
pubmed: 7482712
doi: 10.1097/00007890-199511270-00004
pmcid: 7482712
Furness, P. N. & Taub, N. & Convergence of European Renal Transplant Pathology Assessment Procedures (CERTPAP) Project. International variation in the interpretation of renal transplant biopsies: report of the CERTPAP Project. Kidney Int. 60, 1998–2012 (2001).
pubmed: 11703620
doi: 10.1046/j.1523-1755.2001.00030.x
pmcid: 11703620
Furness, P. N. et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am. J. Surg. Pathol. 27, 805–810 (2003).
pubmed: 12766585
doi: 10.1097/00000478-200306000-00012
pmcid: 12766585
Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).
pubmed: 18294345
doi: 10.1111/j.1600-6143.2008.02159.x
pmcid: 18294345
Junqueira, L. C., Bignolas, G. & Brentani, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11, 447–455 (1979).
pubmed: 91593
doi: 10.1007/BF01002772
pmcid: 91593
López-De León, A. & Rojkind, M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J. Histochem. Cytochem. 33, 737–743 (1985).
pubmed: 2410480
doi: 10.1177/33.8.2410480
pmcid: 2410480
Moragas, A. et al. Cirrhotic changes in livers from children undergoing transplantation. Image analysis. Anal. Quant. Cytol. Histol. 14, 359–366 (1992).
pubmed: 1299226
pmcid: 1299226
Manabe, N. et al. Interferon-alpha 2b therapy reduces liver fibrosis in chronic non-A, non-B hepatitis: a quantitative histological evaluation. Hepatol. 18, 1344–1349 (1993).
doi: 10.1002/hep.1840180610
Calvaruso, V. et al. Computer-assisted image analysis of liver collagen: relationship to Ishak scoring and hepatic venous pressure gradient. Hepatol. 49, 1236–1244 (2009).
doi: 10.1002/hep.22745
Huang, Y. et al. Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int. 33, 1249–1256 (2013).
pubmed: 23617278
doi: 10.1111/liv.12184
pmcid: 23617278
De Heer, E. et al. Morphometry of interstitial fibrosis. Nephrol. Dial. Transplant. 15(Suppl 6), 72–73 (2000).
pubmed: 11143998
doi: 10.1093/ndt/15.suppl_6.72
pmcid: 11143998
Diaz Encarnacion, M. M. et al. Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am. J. Transplant. 4, 248–256 (2004).
pubmed: 14974947
doi: 10.1046/j.1600-6143.2003.00311.x
pmcid: 14974947
Farris, A. B. et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 22, 176–186 (2011).
pubmed: 21115619
pmcid: 3014046
doi: 10.1681/ASN.2009091005
Street, J. M. et al. Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. Physiol. Rep. 2, (2014).
Sund, S., Grimm, P., Reisaeter, A. V. & Hovig, T. Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Nephrol. Dial. Transplant. 19, 2838–2845 (2004).
pubmed: 15385637
doi: 10.1093/ndt/gfh490
pmcid: 15385637
Servais, A. et al. Quantification of interstitial fibrosis by image analysis on routine renal biopsy in patients receiving cyclosporine. Transplantation 84, 1595–1601 (2007).
pubmed: 18165770
doi: 10.1097/01.tp.0000295749.50525.bd
pmcid: 18165770
Servais, A. et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am. J. Transplant 11, 1456–1463 (2011).
pubmed: 21672152
doi: 10.1111/j.1600-6143.2011.03594.x
pmcid: 21672152
François, H. & Chatziantoniou, C. Renal fibrosis: Recent translational aspects. Matrix Biol. J, https://doi.org/10.1016/j.matbio.2017.12.013 (2017).
Hunter, M. G., Hurwitz, S., Bellamy, C. O. C. & Duffield, J. S. Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate. Kidney Int. 67, 94–102 (2005).
pubmed: 15610232
doi: 10.1111/j.1523-1755.2005.00059.x
pmcid: 15610232
Gibyeli Genek, D. et al. Quantitative evaluation of interstitial fibrosis with Sirius Red in IgA nephritis. Ren. Fail. 36, 73–77 (2014).
pubmed: 24028638
doi: 10.3109/0886022X.2013.832311
pmcid: 24028638
Dao, M. et al. The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: Proof of concept. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.14570 (2019).
Lecru, L. et al. Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int. 88, 72–84 (2015).
pubmed: 25760323
doi: 10.1038/ki.2015.63
pmcid: 25760323
R Core Team. R. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).
Gamer, M., Lemon, J. & Singh, I.F.P. Various Coefficients of Interrater Reliability and Agreement. (R package version 0.84.1, 2019).