Usefulness of morphometric image analysis with Sirius Red to assess interstitial fibrosis after renal transplantation from uncontrolled circulatory death donors.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 04 2020
Historique:
received: 17 10 2019
accepted: 19 03 2020
entrez: 25 4 2020
pubmed: 25 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

Early interstitial fibrosis (IF) correlates with long-term renal graft dysfunction, highlighting the need for accurate quantification of IF. However, the currently used Banff classification exhibits some limitations. The aim of our study was to precisely describe the progression of IF after renal transplantation using a new morphometric image analysis method relying of Sirius Red staining. The morphometric analysis we developed showed high inter-observer and intra-observer reproducibility, with ICC [95% IC] of respectively 0.75 [0.67-0.81] (n = 151) and 0.88 [0.72-0.95] (n = 21). We used this method to assess IF (mIF) during the first year after the kidney transplantation from 66 uncontrolled donors after circulatory death (uDCD). Both mIF and interstitial fibrosis (ci) according to the Banff classification significantly increased the first three months after transplantation. From M3 to M12, mIF significantly increased whereas Banff classification failed to highlight increase of ci. Moreover, mIF at M12 (p = 0.005) correlated with mean time to graft function recovery and was significantly associated with increase of creatininemia at M12 and at last follow-up. To conclude, the new morphometric image analysis method we developed, using a routine and cheap staining, may provide valuable tool to assess IF and thus to evaluate new sources of grafts.

Identifiants

pubmed: 32327683
doi: 10.1038/s41598-020-63749-3
pii: 10.1038/s41598-020-63749-3
pmc: PMC7181605
doi:

Substances chimiques

Azo Compounds 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6894

Références

Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).
pubmed: 10580071 doi: 10.1056/NEJM199912023412303 pmcid: 10580071
Savoye, E., Tamarelle, D., Chalem, Y., Rebibou, J.-M. & Tuppin, P. Survival benefits of kidney transplantation with expanded criteria deceased donors in patients aged 60 years and over. Transplantation 84, 1618–1624 (2007).
pubmed: 18165773 doi: 10.1097/01.tp.0000295988.28127.dd pmcid: 18165773
Bayat, S., Kessler, M., Briançon, S. & Frimat, L. Survival of transplanted and dialysed patients in a French region with focus on outcomes in the elderly. Nephrol. Dial. Transplant. 25, 292–300 (2010).
pubmed: 19749147 doi: 10.1093/ndt/gfp469 pmcid: 19749147
Wijnen, R. M. et al. Outcome of transplantation of non-heart-beating donor kidneys. Lancet 345, 1067–1070 (1995).
pubmed: 7715337 doi: 10.1016/S0140-6736(95)90815-3 pmcid: 7715337
Cho, Y. W., Terasaki, P. I., Cecka, J. M. & Gjertson, D. W. Transplantation of kidneys from donors whose hearts have stopped beating. N. Engl. J. Med. 338, 221–225 (1998).
pubmed: 9435327 doi: 10.1056/NEJM199801223380403 pmcid: 9435327
Weber, M., Dindo, D., Demartines, N., Ambühl, P. M. & Clavien, P.-A. Kidney transplantation from donors without a heartbeat. N. Engl. J. Med. 347, 248–255 (2002).
pubmed: 12140300 doi: 10.1056/NEJMoa020274 pmcid: 12140300
Brook, N. R., Waller, J. R. & Nicholson, M. L. Nonheart-beating kidney donation: current practice and future developments. Kidney Int. 63, 1516–1529 (2003).
pubmed: 12631369 doi: 10.1046/j.1523-1755.2003.00854.x pmcid: 12631369
Koffman, G. & Gambaro, G. Renal transplantation from non-heart- beating donors: a review of the European experience. J. Nephrol. 16, 334–341 (2003).
pubmed: 12832731 pmcid: 12832731
Arias-Diaz, J., Alvarez, J., del Barrio, M. R. & Balibrea, J. L. Non-heart-beating donation: current state of the art. Transplant. Proc. 36, 1891–1893 (2004).
pubmed: 15518687 doi: 10.1016/j.transproceed.2004.08.057 pmcid: 15518687
Alonso, A. et al. Renal transplantation from non-heart-beating donors: a single-center 10-year experience. Transplant. Proc. 37, 3658–3660 (2005).
pubmed: 16386496 doi: 10.1016/j.transproceed.2005.09.104 pmcid: 16386496
Gagandeep, S. et al. Expanding the donor kidney pool: utility of renal allografts procured in a setting of uncontrolled cardiac death. Am. J. Transplant. 6, 1682–1688 (2006).
pubmed: 16827871 doi: 10.1111/j.1600-6143.2006.01386.x pmcid: 16827871
Kokkinos, C. et al. Outcome of kidney transplantation from nonheart-beating versus heart-beating cadaveric donors. Transplantation 83, 1193–1199 (2007).
pubmed: 17496535 doi: 10.1097/01.tp.0000261710.53848.51 pmcid: 17496535
Sánchez-Fructuoso, A. I. et al. Victims of cardiac arrest occurring outside the hospital: a source of transplantable kidneys. Ann. Intern. Med. 145, 157–164 (2006).
pubmed: 16880457 doi: 10.7326/0003-4819-145-3-200608010-00003 pmcid: 16880457
Snoeijs, M. G. et al. Kidneys from donors after cardiac death provide survival benefit. J. Am. Soc. Nephrol. 21, 1015–1021 (2010).
pubmed: 20488954 pmcid: 2900965 doi: 10.1681/ASN.2009121203
Viglietti, D. et al. Kidney allograft fibrosis after transplantation from uncontrolled circulatory death donors. Transplantation 99, 409–415 (2015).
pubmed: 25222117 doi: 10.1097/TP.0000000000000228 pmcid: 25222117
Lamb, K. E., Lodhi, S. & Meier-Kriesche, H.-U. Long-term renal allograft survival in the United States: a critical reappraisal. Am. J. Transplant. 11, 450–462 (2011).
pubmed: 20973913 doi: 10.1111/j.1600-6143.2010.03283.x pmcid: 20973913
Haas, M. Chronic allograft nephropathy or interstitial fibrosis and tubular atrophy: what is in a name? Curr. Opin. Nephrol. Hypertens. 23, 245–250 (2014).
pubmed: 24626060 doi: 10.1097/01.mnh.0000444811.26884.2d pmcid: 24626060
Cosio, F. G., El Ters, M., Cornell, L. D., Schinstock, C. A. & Stegall, M. D. Changing Kidney Allograft Histology Early Posttransplant: Prognostic Implications of 1-Year Protocol Biopsies. Am. J. Transplant. 16, 194–203 (2016).
pubmed: 26274817 doi: 10.1111/ajt.13423 pmcid: 26274817
Hart, A. et al. OPTN/SRTR 2015 Annual Data Report: Kidney. Am. J. Transplant. 17(Suppl 1), 21–116 (2017).
pubmed: 28052609 pmcid: 5527691 doi: 10.1111/ajt.14124
Stegall, M. D., Cornell, L. D., Park, W. D., Smith, B. H. & Cosio, F. G. Renal Allograft Histology at 10 Years After Transplantation in the Tacrolimus Era: Evidence of Pervasive Chronic Injury. Am. J. Transplant. https://doi.org/10.1111/ajt.14431 (2017).
Solez, K. et al. Banff ’05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am. J. Transplant 7, 518–526 (2007).
pubmed: 17352710 doi: 10.1111/j.1600-6143.2006.01688.x pmcid: 17352710
Racusen, L. C. & Regele, H. The pathology of chronic allograft dysfunction. Kidney Int. Suppl. S27–32, https://doi.org/10.1038/ki.2010.419 (2010).
Pascual, J., Pérez-Sáez, M. J., Mir, M. & Crespo, M. Chronic renal allograft injury: early detection, accurate diagnosis and management. Transplant. Rev. 26, 280–290 (2012).
doi: 10.1016/j.trre.2012.07.002
Sellarés, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).
pubmed: 22081892 doi: 10.1111/j.1600-6143.2011.03840.x pmcid: 22081892
Heemann, U. & Lutz, J. Pathophysiology and treatment options of chronic renal allograft damage. Nephrol. Dial. Transplant. 28, 2438–2446 (2013).
pubmed: 23625970 doi: 10.1093/ndt/gft087 pmcid: 23625970
Maluf, D. G. et al. Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction. Am. J. Transplant. 14, 1152–1163 (2014).
pubmed: 24698514 pmcid: 4377109 doi: 10.1111/ajt.12696
Torres, I. B., Moreso, F., Sarró, E., Meseguer, A. & Serón, D. The Interplay between inflammation and fibrosis in kidney transplantation. BioMed Res. Int. 2014, 750602 (2014).
pubmed: 24991565 pmcid: 4065724
Serón, D. et al. Reliability of chronic allograft nephropathy diagnosis in sequential protocol biopsies. Kidney Int. 61, 727–733 (2002).
pubmed: 11849416 doi: 10.1046/j.1523-1755.2002.00174.x pmcid: 11849416
Melk, A., Schmidt, B. M. W., Vongwiwatana, A., Rayner, D. C. & Halloran, P. F. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am. J. Transplant. 5, 1375–1382 (2005).
pubmed: 15888044 doi: 10.1111/j.1600-6143.2005.00846.x pmcid: 15888044
Serón, D. et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation 69, 1849–1855 (2000).
pubmed: 10830221 doi: 10.1097/00007890-200005150-00019 pmcid: 10830221
Yilmaz, S. et al. Protocol core needle biopsy and histologic Chronic Allograft Damage Index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J. Am. Soc. Nephrol. 14, 773–779 (2003).
pubmed: 12595515 doi: 10.1097/01.ASN.0000054496.68498.13 pmcid: 12595515
Serón, D. et al. Early protocol renal allograft biopsies and graft outcome. Kidney Int. 51, 310–316 (1997).
pubmed: 8995748 doi: 10.1038/ki.1997.38 pmcid: 8995748
Pape, L. et al. Computer-assisted quantification of fibrosis in chronic allograft nephropaty by picosirius red-staining: a new tool for predicting long-term graft function. Transplantation 76, 955–958 (2003).
pubmed: 14508360 doi: 10.1097/01.TP.0000078899.62040.E5 pmcid: 14508360
Grimm, P. C. et al. Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J. Am. Soc. Nephrol. 14, 1662–1668 (2003).
pubmed: 12761269 doi: 10.1097/01.ASN.0000066143.02832.5E pmcid: 12761269
Roufosse, C. et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation, https://doi.org/10.1097/TP.0000000000002366 (2018).
doi: 10.1097/TP.0000000000002366 pubmed: 30028786 pmcid: 30028786
Marcussen, N., Olsen, T. S., Benediktsson, H., Racusen, L. & Solez, K. Reproducibility of the Banff classification of renal allograft pathology. Inter- and intraobserver variation. Transplantation 60, 1083–1089 (1995).
pubmed: 7482712 doi: 10.1097/00007890-199511270-00004 pmcid: 7482712
Furness, P. N. & Taub, N. & Convergence of European Renal Transplant Pathology Assessment Procedures (CERTPAP) Project. International variation in the interpretation of renal transplant biopsies: report of the CERTPAP Project. Kidney Int. 60, 1998–2012 (2001).
pubmed: 11703620 doi: 10.1046/j.1523-1755.2001.00030.x pmcid: 11703620
Furness, P. N. et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am. J. Surg. Pathol. 27, 805–810 (2003).
pubmed: 12766585 doi: 10.1097/00000478-200306000-00012 pmcid: 12766585
Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).
pubmed: 18294345 doi: 10.1111/j.1600-6143.2008.02159.x pmcid: 18294345
Junqueira, L. C., Bignolas, G. & Brentani, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11, 447–455 (1979).
pubmed: 91593 doi: 10.1007/BF01002772 pmcid: 91593
López-De León, A. & Rojkind, M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J. Histochem. Cytochem. 33, 737–743 (1985).
pubmed: 2410480 doi: 10.1177/33.8.2410480 pmcid: 2410480
Moragas, A. et al. Cirrhotic changes in livers from children undergoing transplantation. Image analysis. Anal. Quant. Cytol. Histol. 14, 359–366 (1992).
pubmed: 1299226 pmcid: 1299226
Manabe, N. et al. Interferon-alpha 2b therapy reduces liver fibrosis in chronic non-A, non-B hepatitis: a quantitative histological evaluation. Hepatol. 18, 1344–1349 (1993).
doi: 10.1002/hep.1840180610
Calvaruso, V. et al. Computer-assisted image analysis of liver collagen: relationship to Ishak scoring and hepatic venous pressure gradient. Hepatol. 49, 1236–1244 (2009).
doi: 10.1002/hep.22745
Huang, Y. et al. Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int. 33, 1249–1256 (2013).
pubmed: 23617278 doi: 10.1111/liv.12184 pmcid: 23617278
De Heer, E. et al. Morphometry of interstitial fibrosis. Nephrol. Dial. Transplant. 15(Suppl 6), 72–73 (2000).
pubmed: 11143998 doi: 10.1093/ndt/15.suppl_6.72 pmcid: 11143998
Diaz Encarnacion, M. M. et al. Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am. J. Transplant. 4, 248–256 (2004).
pubmed: 14974947 doi: 10.1046/j.1600-6143.2003.00311.x pmcid: 14974947
Farris, A. B. et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 22, 176–186 (2011).
pubmed: 21115619 pmcid: 3014046 doi: 10.1681/ASN.2009091005
Street, J. M. et al. Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. Physiol. Rep. 2, (2014).
Sund, S., Grimm, P., Reisaeter, A. V. & Hovig, T. Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Nephrol. Dial. Transplant. 19, 2838–2845 (2004).
pubmed: 15385637 doi: 10.1093/ndt/gfh490 pmcid: 15385637
Servais, A. et al. Quantification of interstitial fibrosis by image analysis on routine renal biopsy in patients receiving cyclosporine. Transplantation 84, 1595–1601 (2007).
pubmed: 18165770 doi: 10.1097/01.tp.0000295749.50525.bd pmcid: 18165770
Servais, A. et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am. J. Transplant 11, 1456–1463 (2011).
pubmed: 21672152 doi: 10.1111/j.1600-6143.2011.03594.x pmcid: 21672152
François, H. & Chatziantoniou, C. Renal fibrosis: Recent translational aspects. Matrix Biol. J, https://doi.org/10.1016/j.matbio.2017.12.013 (2017).
Hunter, M. G., Hurwitz, S., Bellamy, C. O. C. & Duffield, J. S. Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate. Kidney Int. 67, 94–102 (2005).
pubmed: 15610232 doi: 10.1111/j.1523-1755.2005.00059.x pmcid: 15610232
Gibyeli Genek, D. et al. Quantitative evaluation of interstitial fibrosis with Sirius Red in IgA nephritis. Ren. Fail. 36, 73–77 (2014).
pubmed: 24028638 doi: 10.3109/0886022X.2013.832311 pmcid: 24028638
Dao, M. et al. The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: Proof of concept. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.14570 (2019).
Lecru, L. et al. Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int. 88, 72–84 (2015).
pubmed: 25760323 doi: 10.1038/ki.2015.63 pmcid: 25760323
R Core Team. R. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).
Gamer, M., Lemon, J. & Singh, I.F.P. Various Coefficients of Interrater Reliability and Agreement. (R package version 0.84.1, 2019).

Auteurs

Myriam Dao (M)

AP-HP, Service de Néphrologie adulte, Hôpital Necker, 75015, Paris, France.
Inserm UMR_S 1155, Hôpital Tenon, 75020, Paris, France.

Christelle Pouliquen (C)

Service d'Anatomie pathologique, Hôpital Foch, 92150, Suresnes, France.

Alyette Duquesne (A)

Service de Néphrologie, CHI André Grégoire, 93100, Montreuil, France.

Katia Posseme (K)

AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France.

Charlotte Mussini (C)

AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France.

Antoine Durrbach (A)

AP-HP, Service de Néphrologie, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France.

Catherine Guettier (C)

AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France.

Hélène François (H)

Inserm UMR_S 1155, Hôpital Tenon, 75020, Paris, France. helene.francois@aphp.fr.
AP-HP, Unité de Néphrologie et de Transplantation rénale, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, Sorbonne Université, Paris, France. helene.francois@aphp.fr.

Sophie Ferlicot (S)

AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH