Differential Effects of the Hormonal and Copper Intrauterine Device on the Endometrial Transcriptome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 04 2020
Historique:
received: 13 12 2019
accepted: 02 04 2020
entrez: 25 4 2020
pubmed: 25 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

The contraceptive effectiveness of intrauterine devices (IUDs) has been attributed in part to a foreign body reaction in the endometrium. We performed this study to better understand mechanisms of action of contraceptives of by studying their effects on endometrial and cervical transcriptomes. We collected endometrial and cervical biopsies from women using the levonorgestrel-releasing intrauterine system (LNG-IUS, n = 11), copper intrauterine device (cu-IUD, n = 13) or levonorgestrel-containing combined oral contraceptives (COC, n = 12), and from women not using contraceptives (control group, n = 11). Transcriptional profiling was performed with Affymetrix arrays, Principal Component Analysis and the bioconductor package limma. In endometrial samples from cu-IUD users, there were no genes with statistically significant differential expression compared to controls. In LNG-IUS users, 2509 genes were differentially expressed and mapped predominantly onto immune and inflammatory pathways. The cervical samples showed no statistically significant differential gene expression compared to controls. Hormonal and copper IUDs have significantly different effects on the endometrial transcriptome, with the LNG-IUS transcriptome showing pronounced inflammation and immune activation compared to controls whereas the cu-IUD transcriptome was indistinguishable from luteal phase endometrium. These findings argue against a foreign body reaction as a common mechanism of action of IUDs.

Identifiants

pubmed: 32327684
doi: 10.1038/s41598-020-63798-8
pii: 10.1038/s41598-020-63798-8
pmc: PMC7181869
doi:

Substances chimiques

Contraceptive Agents, Female 0
Levonorgestrel 5W7SIA7YZW

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6888

Subventions

Organisme : NICHD NIH HHS
ID : K12 HD001259
Pays : United States
Organisme : NICHD NIH HHS
ID : K12 HD001262
Pays : United States

Références

Buhling, K. J., Zite, N. B., Lotke, P., Black, K. & Group, I. W. Worldwide use of intrauterine contraception: a review. Contraception 89, 162–173 (2014).
doi: 10.1016/j.contraception.2013.11.011
Apter, D., Gemzell-Danielsson, K., Hauck, B., Rosen, K. & Zurth, C. Pharmacokinetics of two low-dose levonorgestrel-releasing intrauterine systems and effects on ovulation rate and cervical function: pooled analyses of phase II and III studies. Fertil Steril 101(1656-1662), e1651–1654 (2014).
Moraes, L. G. et al. Assessment of the quality of cervical mucus among users of the levonorgestrel-releasing intrauterine system at different times of use. Eur J Contracept Reprod Health Care 21, 318–322 (2016).
doi: 10.1080/13625187.2016.1193139
Ortiz, M. E. & Croxatto, H. B. Copper-T intrauterine device and levonorgestrel intrauterine system: biological bases of their mechanism of action. Contraception 75, S16–30 (2007).
doi: 10.1016/j.contraception.2007.01.020
Gemzell-Danielsson, K., Berger, C. & Lalitkumar, P. G. L. Emergency contraception–mechanisms of action. Contraception 87, 300–308 (2013).
doi: 10.1016/j.contraception.2012.08.021
Shanmugasundaram, U. et al. Effects of the levonorgestrel-releasing intrauterine device on the immune microenvironment of the human cervix and endometrium. Am J Reprod Immunol 76, 137–148 (2016).
doi: 10.1111/aji.12535
Goldfien, G. A. et al. Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix. Reprod Sci 22, 814–828 (2015).
doi: 10.1177/1933719114565035
Cavrois, M. et al. Effects of the levonorgestrel-containing intrauterine device, copper intrauterine device, and levonorgestrel-containing oral contraceptive on susceptibility of immune cells from cervix, endometrium and blood to HIV-1 fusion measured ex vivo. PLoS One 14, e0221181 (2019).
doi: 10.1371/journal.pone.0221181
Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
doi: 10.1093/bioinformatics/btq431
Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12, 115–121 (2015).
doi: 10.1038/nmeth.3252
annotate: Annotation for microarrays (R package version 1.60.0, 2018).
hugene10sttranscriptcluster.db: Affymetrix hugene10 annotation data (chip hugene10sttranscriptcluster) v. Rpackage version 8.5.0 (2016).
Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
doi: 10.1093/biostatistics/4.2.249
R Core Team: A language and environment for statistical computing (2018).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
doi: 10.1093/nar/gkv007
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289–300 (1995).
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207–210 (2002).
doi: 10.1093/nar/30.1.207
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–97 (2016).
doi: 10.1093/nar/gkw377
Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res 46, D649–D655 (2018).
doi: 10.1093/nar/gkx1132
Contardo-Jara, V. et al. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha. Environ Pollut 159, 38–44 (2011).
doi: 10.1016/j.envpol.2010.09.028
Maruo, T. et al. Effects of the levonorgestrel-releasing intrauterine system on proliferation and apoptosis in the endometrium. Hum Reprod 16, 2103–2108 (2001).
doi: 10.1093/humrep/16.10.2103
Patai, K., Balogh, I. & Szarvas, Z. Clinicopathological problems of the local tissue effect of IUDs containing copper. III. Cytochemical study of the endometrial scrapings. Acta Chir Hung 30, 139–144 (1989).
pubmed: 2763772
Sheppard, B. L. Endometrial morphological changes in IUD users: a review. Contraception 36, 1–10 (1987).
doi: 10.1016/0010-7824(87)90057-6
Horcajadas, J. A. et al. Effect of an intrauterine device on the gene expression profile of the endometrium. J Clin Endocrinol Metab 91, 3199–3207 (2006).
doi: 10.1210/jc.2006-0430
Kang, Y. J. Metallothionein redox cycle and function. Exp Biol Med (Maywood) 231, 1459–1467 (2006).
doi: 10.1177/153537020623100903
Bhandari, S. et al. Detection and Manipulation of the Stress Response Protein Metallothionein. Curr Protoc Toxicol 71, 17 19 11–17 19 28 (2017).
doi: 10.1002/cptx.17
Orbo, A. et al. Down-regulated progesterone receptor A and B coinciding with successful treatment of endometrial hyperplasia by the levonorgestrel impregnated intrauterine system. Acta Obstet Gynecol Scand 89(11) 1438–46. Epub 2010/10/20. https://doi.org/10.3109/00016349.2010.512068 . PubMed PMID: 20955098 (2010).

Auteurs

Karen Smith-McCune (K)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA. Karen.mccune@ucsf.edu.

Reuben Thomas (R)

Gladstone Institutes, San Francisco, CA, USA.

Sarah Averbach (S)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, USA.

Dominika Seidman (D)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.

Margaret Takeda (M)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.

Sahar Houshdaran (S)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.

Linda C Giudice (LC)

Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH