Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma.


Journal

Journal of engineering and science in medical diagnostics and therapy
ISSN: 2572-7966
Titre abrégé: J Eng Sci Med Diagn Ther
Pays: United States
ID NLM: 101723801

Informations de publication

Date de publication:
Feb 2019
Historique:
received: 31 08 2018
revised: 20 12 2018
entrez: 25 4 2020
pubmed: 1 2 2019
medline: 1 2 2019
Statut: ppublish

Résumé

Airway transmural pressure in healthy homogeneous lungs with dilated airways is approximately equal to the difference between intraluminal and pleural pressure. However, bronchoconstriction causes airway narrowing, parenchymal distortion, dynamic hyperinflation, and the emergence of ventilation defects (VDefs) affecting transmural pressure. This study aimed to investigate the changes in transmural pressure caused by bronchoconstriction in a bronchial tree. Transmural pressures before and during bronchoconstriction were estimated using an integrative computational model of bronchoconstriction. Briefly, this model incorporates a 12-generation symmetric bronchial tree, and the Anafi and Wilson model for the individual airways of the tree. Bronchoconstriction lead to the emergence of VDefs and a relative increase in peak transmural pressures of up to 84% compared to baseline. The highest increase in peak transmural pressure occurred in a central airway outside of VDefs, and the lowest increase was 27% in an airway within VDefs illustrating the heterogeneity in peak transmural pressures within a bronchial tree. Mechanisms contributing to the increase in peak transmural pressures include increased regional ventilation and dynamic hyperinflation both leading to increased alveolar pressures compared to baseline. Pressure differences between intraluminal and alveolar pressure increased driven by the increased airway resistance and its contribution to total transmural pressure reached up to 24%. In conclusion, peak transmural pressure in lungs with VDefs during bronchoconstriction can be substantially increased compared to dilated airways in healthy homogeneous lungs and is highly heterogeneous. Further insights will depend on the experimental studies taking these conditions into account.

Identifiants

pubmed: 32328574
doi: 10.1115/1.4042478
pii: JESMDT-18-1047
pmc: PMC7164500
mid: NIHMS1573515
doi:

Types de publication

Journal Article

Langues

eng

Pagination

0110051-110056

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL087281
Pays : United States

Informations de copyright

Copyright © 2019 by ASME.

Références

J Appl Physiol (1985). 2012 May;112(9):1437-44
pubmed: 22241062
Allergy. 2004 May;59(5):469-78
pubmed: 15080825
Am J Respir Crit Care Med. 2012 Aug 1;186(3):225-32
pubmed: 22679010
J Appl Physiol (1985). 2013 Aug 15;115(4):505-13
pubmed: 23722712
J Theor Biol. 2017 Dec 21;435:98-105
pubmed: 28867222
Science. 2016 Apr 29;352(6285):595-9
pubmed: 27056844
J Appl Physiol. 1970 May;28(5):596-608
pubmed: 5442255
Am J Respir Crit Care Med. 1999 Mar;159(3):959-67
pubmed: 10051279
J Appl Physiol (1985). 2014 Nov 1;117(9):979-88
pubmed: 25170072
PLoS One. 2014 Nov 17;9(11):e112443
pubmed: 25402457
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6
pubmed: 23128069
Nature. 2005 Apr 7;434(7034):777-82
pubmed: 15772676
J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):419-29
pubmed: 438007
Am J Respir Crit Care Med. 2018 Apr 1;197(7):876-884
pubmed: 29313707
J Appl Physiol (1985). 2008 Jun;104(6):1844-6
pubmed: 18202170
J Appl Physiol (1985). 2011 May;110(5):1482-6
pubmed: 21252219
Sci Rep. 2018 Mar 21;8(1):4930
pubmed: 29563588
Science. 1972 Aug 4;177(4047):393-6
pubmed: 17796623
J Aerosol Med Pulm Drug Deliv. 2016 Jun;29(3):260-72
pubmed: 26824777
J Appl Physiol (1985). 2013 Aug 15;115(4):436-45
pubmed: 23722710
Eur Respir J. 2012 Jul;40(1):45-54
pubmed: 22267756
Acad Radiol. 2008 Jun;15(6):753-62
pubmed: 18486011
J Appl Physiol. 1950 May;2(11):592-607
pubmed: 15436363
J Appl Physiol (1985). 2001 Sep;91(3):1185-92
pubmed: 11509514
Natl Health Stat Report. 2011 Jan 12;(32):1-14
pubmed: 21355352
J Appl Physiol (1985). 2009 Jun;106(6):1949-58
pubmed: 19359611
J Allergy Clin Immunol. 2003 Jun;111(6):1205-11
pubmed: 12789218
Crit Rev Biomed Eng. 2011;39(4):263-80
pubmed: 22011233
Compr Physiol. 2012 Jul;2(3):1921-35
pubmed: 23723029
Lancet. 2008 Sep 20;372(9643):1088-99
pubmed: 18805337
J Appl Physiol (1985). 2010 Aug;109(2):295-304
pubmed: 20431023
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):17-24
pubmed: 18514592
J Theor Biol. 2016 Oct 7;406:166-75
pubmed: 27374171
J Appl Physiol (1985). 2013 May 15;114(10):1460-71
pubmed: 23493364
J Appl Physiol (1985). 2018 May 1;124(5):1222-1232
pubmed: 29420156
Am J Respir Crit Care Med. 2006 Aug 1;174(3):245-53
pubmed: 16690973
Am J Physiol Lung Cell Mol Physiol. 2017 Mar 1;312(3):L425-L431
pubmed: 28062484
J Appl Physiol (1985). 2014 Aug 15;117(4):353-62
pubmed: 24947031
Respir Physiol Neurobiol. 2019 Jan;259:136-142
pubmed: 30217723
Am J Respir Crit Care Med. 2005 Apr 1;171(7):714-21
pubmed: 15640360

Auteurs

Tilo Winkler (T)

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 e-mail: twinkler@mgh.harvard.edu.

Classifications MeSH