Shifts in food plant abundance for flower-visiting insects between 1900 and 2017 in the canton of Zurich, Switzerland.
bees
beetles
butterflies
flower visitors
homogenization
hoverflies
land-use change
phenology
pollination
specialization
wasps
Journal
Ecological applications : a publication of the Ecological Society of America
ISSN: 1051-0761
Titre abrégé: Ecol Appl
Pays: United States
ID NLM: 9889808
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
11
11
2019
revised:
26
02
2020
accepted:
18
03
2020
pubmed:
25
4
2020
medline:
7
1
2021
entrez:
25
4
2020
Statut:
ppublish
Résumé
Adult flower-visiting insects feed on nectar and pollen and partly collect floral resources to feed their larvae. The reduction in food availability has therefore been proposed as one of the main causes for the drastic decline in flower-visiting insects in Central Europe. We compared the current (2012-2017) abundances of food plants of different groups of flower-visiting insects to that of 1900-1930 in the canton of Zurich, Switzerland. Comparisons were done separately for different vegetation types, flowering months, and groups of diurnal flower-visiting insects, such as bees, bumble bees, wasps, butterflies, hoverflies, flies, and beetles. We found a general decrease in food plant abundance for all groups of flower-visiting insects and in all vegetation types except ruderal areas. Reductions of food plant abundance were most pronounced for wetlands and agricultural fields, reflecting the massive transformation of wetlands into other habitat types and the intensified management of agricultural fields. Food plant abundance for specialized flower visitors (bees, bumble bees, butterflies) of wetlands decreased most strongly in May and for generalized flower visitors (wasps, hoverflies, flies, beetles) in July. Specialized plant species, i.e., species with few groups of flower visitors, decreased more strongly in abundance than species with many groups of flower visitors. Finally, we found a homogenization of food plant assemblages in all vegetation types except ruderal areas, where the opposite pattern emerged. Our results suggest a significant reduction in the diversity and abundance of food plants for flower-visiting insects over the past century, which has been most severe for the more specialized insect groups. The trend of insect decline, in particular those specialized on few plant species, can only be stopped by extending suitable habitats, i.e., by increasing food availability and reestablish selected plant populations.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e02138Subventions
Organisme : Boely-Stiftung
Pays : International
Organisme : Georg und Bertha Schwyzer-Winiker-Stiftung
Pays : International
Organisme : Stiftung Temperatio
Pays : International
Organisme : Vontobel-Stiftung
Pays : International
Organisme : Ernst Göhner Stiftung
Pays : International
Organisme : Markus Oettli-Stiftung
Pays : International
Organisme : Walter Haefner Stiftung
Pays : International
Organisme : Paul Schiller Stiftung
Pays : International
Organisme : Lotteriefond Kanton Zürich
Pays : International
Informations de copyright
© 2020 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of Ecological Society of America.
Références
Balfour, N. J., J. Ollerton, M. C. Castellanos, and F. L. Ratnieks. 2018. British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation 222:278-283.
Bates, A. J., J. P. Sadler, A. J. Fairbrass, S. J. Falk, J. D. Hale, and T. J. Matthews. 2011. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6:e23459.
Baude, M., W. E. Kunin, N. D. Boatman, S. Conyers, N. Davies, M. A. Gillespie, and J. Memmott. 2016. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85-88.
Baumann, E. 1933. Manuscript of a Flora of the canton of Zurich. Ca. 1200 loose pages, ordered by families, genera and species. Library of the Department of Systematic and Evolutionary, Botany, University of Zurich, Zurich, Switzerland.
Biesmeijer, J. C., S. P. Roberts, M. Reemer, R. Ohlemüller, M. Edwards, T. Peeters, and J. Settele. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351-354.
Bornand, C., A. Gygax, P. Juillerat, M. Jutzi, A. Möhl, S. Rometsch, L. Sager, H. Santiago, and S. Eggenberg. 2016. Rote Liste Gefässpflanzen. Gefährdete Arten der Schweiz. Bundesamt für Umwelt, Bern und Info Flora, Bern, Switzerland.
Bosshard, A. 2016. Das Naturwiesland der Schweiz und Mitteleuropas. Verlag Haupt, Bern, Switzerland.
Brittain, C. A., M. Vighi, R. Bommarco, J. Settele, and S. G. Potts. 2010. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology 11:106-115.
Bruckman, D., and D. R. Campbell. 2014. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 176:465-476.
Bürgi, M. 1999. A case study of forest change in the Swiss lowlands. Landscape Ecology 14:567-575.
Carvalheiro, L. G., et al. 2013. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecology Letters 16:870-878.
Carvell, C., D. B. Roy, S. M. Smart, R. F. Pywell, C. D. Preston, and D. Goulson. 2006. Declines in forage availability for bumblebees at a national scale. Biological Conservation 132:481-489.
Cordillot, F., and G. Klaus. 2011. Gefährdete Arten in der Schweiz. Synthese Rote Listen, Stand 2010. Bundesamt für Umwelt, Bern, Switzerland.
Damschen, E. I., S. Harrison, and J. B. Grace. 2010. Climate change effects on an endemic-rich edaphic flora: resurveying Robert H. Whittaker’s Siskiyou sites (Oregon, USA). Ecology 91:3609-3619.
de Palma, A., et al. 2016. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports 6:31153.
Delarze, R., Y. Gonseth, S. Eggenberg, and M. Vust. 2015. Lebensräume der Schweiz. Third edition. Ott Verlag, Bern, Switzerland.
Fitzpatrick, Ú., T. E. Murray, A. W. Byrne, R. J. Paxton, and M. J. F. Brown. 2006. Regional red list of Irish bees. National Parks and Wildlife Service (Ireland) and Environment and Heritage Service (N. Ireland), Belfast, UK.
Fitzpatrick, Ú., T. E. Murray, R. J. Paxton, J. Breen, D. Cotton, V. Santorum, and M. J. F. Brown. 2007. Rarity and decline in bumblebees-a test of causes and correlates in the Irish fauna. Biological Conservation 136:185-194.
Fründ, J., K. E. Linsenmair, and N. Blüthgen. 2010. Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581-1590.
Gattlen, N., G. Klaus, and G. Litsios. 2017. Biodiversität in der Schweiz: Zustand und Entwicklung. Ergebnisse des Überwachungssystems im Bereich Biodiversität, Stand 2016. Bundesamt für Umwelt, Bern, Switzerland.
Gimmi, U., T. Lachat, and M. Bürgi. 2011. Reconstructing the collapse of wetland networks in the Swiss lowlands 1850-2000. Landscape Ecology 26:1071-1083.
Goulson, D., G. C. Lye, and B. Darvill. 2008. Decline and conservation of bumble bees. Annual Reviews in Entomology 53:191-208.
Grundel, R., R. P. Jean, K. J. Frohnapple, G. A. Glowacki, P. E. Scott, and N. B. Pavlovic. 2010. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. Ecological Applications 20:1678-1692.
Hallmann, C. A., et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809.
Hautekèete, N.-C., L. Frachon, C. Luczak, B. Toussaint, W. van Landuyt, F. van Rossum, and Y. Piquot. 2015. Habitat type shapes long-term plant biodiversity budgets in two densely populated regions in north-western Europe. Diversity and Distributions 21:631-642.
Jäger, E. J. 2011. Rothmaler-Exkursionsflora von Deutschland. Twentieth edition. Springer Spektrum, Heidelberg, Germany.
Knuth, P. 1899/1904. Handbuch der Blütenbiologie, Bd. II + III, 1 and 2. Teil. Engelmann, Leipzig, Germany.
Kosior, A., W. Celary, P. Olejniczak, J. Fijał, W. Król, W. Solarz, and P. Płonka. 2007. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe. Oryx 41:79-88.
Lachat, T., F. Blaser, R. Bösch, L. Bonnard, U. Gimmi, A. Grünig, C. Roulier, G. Sirena, J. Stöcklin, and G. Volkart. 2010. Verlust wertvoller Lebensräume. Pages 22-63inT. Lachat, Pauli, D., Gonseth, Y., Klaus, G., Scheidegger, C., Vittoz, P., and Walter, T. editors. Wandel der Biodiversität in der Schweiz seit 1990: Ist die Talsohle erreicht?. Bristol-Stiftung, Zürich, Switzerland and Haupt Verlag, Bern, Switzerland.
Lauber, K., G. Wagner, and A. Gygax. 2018. Flora Helvetica. Haupt Verlag, Bern, Switzerland.
Leong, M., L. C. Ponisio, C. Kremen, R. W. Thorp, and G. K. Roderick. 2016. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes. Global Change Biology 22:1046-1053.
Moroń, D., H. Szentgyörgyi, M. Wantuch, W. Celary, C. Westphal, J. Settele, and M. Woyciechowski. 2008. Diversity of wild bees in wet meadows: implications for conservation. Wetlands 28:975-983.
Naegeli, O., and A. Thellung. 1905. Die Ruderal- und Adventivflora des Kantons Zürich. Vierteljahrss. Naturforschende Gesellschaft Zürich 50:255-305.
Nilsson, S. G., M. Franzen, and E. Jönsson. 2008. Long-term land-use changes and extinction of specialised butterflies. Insect Conservation and Diversity 1:197-207.
Noël, F., D. Prati, M. van Kleunen, A. Gygax, D. Moser, and M. Fischer. 2011. Establishment success of 25 rare wetland species introduced into restored habitats is best predicted by ecological distance to source habitats. Biological Conservation 144:602-609.
Oertli, S., A. Müller, and S. Dorn. 2005. Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). European Journal of Entomology 102:53-63.
Ollerton, J., H. Erenler, M. Edwards, and R. Crockett. 2014. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346:1360-1362.
Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25:345-353.
Potts, S. G., B. Vulliamy, A. Dafni, G. Ne'eman, and P. Willmer. 2003. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628-2642.
Price, B., F. Kienast, I. Seidl, C. Ginzler, P. H. Verburg, and J. Bolliger. 2015. Future landscapes of Switzerland: Risk areas for urbanisation and land abandonment. Applied Geography 57:32-41.
R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rollin, O., G. Benelli, S. Benvenuti, A. Decourtye, S. D. Wratten, A. Canale, and N. Desneux. 2016. Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy for Sustainable Development 36:8-30.
Scheper, J., M. Reemer, R. van Kats, W. A. Ozinga, G. T. van der Linden, J. H. Schaminée, H. Siepel, and D. Kleijn. 2014. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in the Netherlands. Proceedings of the National Academy of Sciences USA 111:17552-17557.
Schiess, H., and C. Schiess-Bühler. 1997. Dominanzminderung als ökologisches Prinzip: eine Neubewertung der ursprünglichen Waldnutzungen für den Arten- und Biotopschutz am Beispiel der Tagfalterfauna eines Auenwaldes in der Nordschweiz. Mitteilungen der Eidgenössischen Forschungsanstalten für Wald, Schnee und Landschaft 72:1-127.
Schleuning, M., et al. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications 7:13965.
Seibold, S., et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671-674.
T’ai, H. R., J. H. Cane, and S. L. Buchmann. 2000. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Monographs 70:617-643.
van Vliet, J., H. L. de Groot, P. Rietveld, and P. H. Verburg. 2015. Manifestations and underlying drivers of agricultural land use change in Europe. Landscape and Urban Planning 133:24-36.
Wallisdevries, M. F., C. A. van Swaay, and C. L. Plate. 2012. Changes in nectar supply: a possible cause of widespread butterfly decline. Current Zoology 58:384-391.
Weiner, C. N., M. Werner, K. E. Linsenmair, and N. Blüthgen. 2011. Land use intensity in grasslands: Changes in biodiversity, species composition and specialisation in flower visitor networks. Basic and Applied Ecology 12:292-299.
Weiner, C. N., M. Werner, K. E. Linsenmair, and N. Blüthgen. 2014. Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95:466-474.
Westrich, P., U. Frommer, K. Mandery, H. Riemann, H. Ruhnke, C. Saure, and J. Voith. 2011. Rote Liste und Gesamtartenliste der Bienen (Hymenoptera, Apidae) Deutschlands. InM. Binot-Hafke, S. Balzer, N. Becker, H. Gruttke, H. Haupt, N. Hofbauer, G. Ludwig, G. Matzke-Hajek, and M. Strauch, editors. Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Münster (Landwirtschaftsverlag). Naturschutz und Biologische Vielfalt 70, 373-416.
Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, and C. C. Davis. 2008. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences USA 105:17029-17033.
Wohlgemuth, T., M. Bürgi, C. Scheidegger, and M. Schütz. 2002. Dominance reduction of species through disturbance-a proposed management principle for central European forests. Forest Ecological Management 166:1-15.
Wohlgemuth, T., C. del Fabbro, A. Kehl, M. Kessler, and M. Nobis. 2020. Flora des Kantons Zürich. Zürcherische Botanische Gesellschaft and Haupt Verlag, Zurich, Switzerland.