RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway.
AlkB Homolog 5, RNA Demethylase
/ metabolism
Alpha-Ketoglutarate-Dependent Dioxygenase FTO
/ genetics
Animals
Apoptosis
/ genetics
Carcinogenesis
/ genetics
Cell Proliferation
/ genetics
Demethylation
Down-Regulation
/ genetics
Female
Gene Expression Regulation, Neoplastic
Humans
Macrophages
/ metabolism
Mice, Inbred BALB C
Mice, Nude
NF-kappa B
/ metabolism
Nanog Homeobox Protein
/ metabolism
Neoplasm Invasiveness
Ovarian Neoplasms
/ enzymology
Signal Transduction
Toll-Like Receptor 4
/ metabolism
Tumor Microenvironment
/ genetics
Up-Regulation
/ genetics
ALKBH5
RNA methylation
ovarian cancer
tumour microenvironment
Journal
Journal of cellular and molecular medicine
ISSN: 1582-4934
Titre abrégé: J Cell Mol Med
Pays: England
ID NLM: 101083777
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
26
05
2019
revised:
23
12
2019
accepted:
01
03
2020
pubmed:
25
4
2020
medline:
29
4
2021
entrez:
25
4
2020
Statut:
ppublish
Résumé
Methylation is the main form of RNA modification. N6-methyladenine (m6A) regulates the splicing and translation of mRNA. Alk B homologue 5 (ALKBH5) participates in the biological regulation of various cancers. However, its role in ovarian carcinogenesis has not been unveiled. In the present study, ALKBH5 showed higher expression in ovarian cancer tissue than in normal ovarian tissue, but lower expression in ovarian cancer cell lines than in normal ovarian cell lines. Interestingly, Toll-like receptor (TLR4), a molecular functioning in tumour microenvironment (TME), demonstrated the same expression trend. To investigate the effect of abnormal TME on ovarian carcinogenesis, we established an in vitro model in which macrophages and ovarian cancer cells were co-cultured. In the ovarian cancer cells co-cultured with M2 macrophages, the expression of ALKBH5 and TLR4 increased. We also verified that TLR4 up-regulated ALKBH5 expression via activating NF-κB pathway. Depending on transcriptome sequencing, m6A-Seq and m6A MeRIP, we found that NANOG served as a target in ALKBH5-mediated m6A modification. NANOG expression increased after mRNA demethylation, consequently enhancing the aggressiveness of ovarian cancer cells. In conclusion, highly expressed TLR4 activated NF-κB pathway, up-regulated ALKBH5 expression and increased m6A level and NANOG expression, all contributing to ovarian carcinogenesis. Our study revealed the role of m6A in ovarian carcinogenesis, providing a clue for inventing new target therapy.
Identifiants
pubmed: 32329191
doi: 10.1111/jcmm.15228
pmc: PMC7294121
doi:
Substances chimiques
NF-kappa B
0
Nanog Homeobox Protein
0
Toll-Like Receptor 4
0
AlkB Homolog 5, RNA Demethylase
EC 1.14.11.-
Alpha-Ketoglutarate-Dependent Dioxygenase FTO
EC 1.14.11.33
FTO protein, human
EC 1.14.11.33
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6137-6148Informations de copyright
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.
Références
J Funct Biomater. 2015 Feb 17;6(1):81-103
pubmed: 25695337
J Biol Chem. 2014 Jun 20;289(25):17299-311
pubmed: 24778178
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Nat Rev Genet. 2014 May;15(5):293-306
pubmed: 24662220
Cancer Res. 2006 Apr 1;66(7):3859-68
pubmed: 16585214
J Mol Biol. 1977 Oct 5;115(4):695-714
pubmed: 592376
Cancer Lett. 2018 Oct 1;433:242-251
pubmed: 29964205
World J Surg Oncol. 2012 Sep 17;10:193
pubmed: 22985132
Tumour Biol. 2016 Oct;37(10):13279-13286
pubmed: 27460076
Nat Cell Biol. 2014 Feb;16(2):191-8
pubmed: 24394384
Cell. 2010 Mar 19;140(6):883-99
pubmed: 20303878
Nature. 2014 Jan 2;505(7481):117-20
pubmed: 24284625
Semin Cancer Biol. 2018 Aug;51:160-169
pubmed: 28782606
J Transl Med. 2013 Jun 13;11:147
pubmed: 23763830
Nat Rev Mol Cell Biol. 2014 May;15(5):313-26
pubmed: 24713629
JAMA Oncol. 2019 Jan 1;5(1):51-57
pubmed: 30128536
J Mol Biol. 1979 Dec 15;135(3):733-52
pubmed: 537090
Cell. 2015 Jun 4;161(6):1388-99
pubmed: 26046440
Nucleic Acids Res. 1983 Mar 11;11(5):1475-89
pubmed: 6828386
Cytokine. 2012 May;58(2):133-47
pubmed: 22349527
Pathobiology. 2013;80(3):146-54
pubmed: 23364389
BMC Genomics. 2003 Dec 10;4(1):48
pubmed: 14667252
CA Cancer J Clin. 2018 Jan;68(1):7-30
pubmed: 29313949
J Transl Med. 2012 Apr 25;10:77
pubmed: 22533866
Nat Rev Cancer. 2009 Jan;9(1):57-63
pubmed: 19052556
Nat Genet. 2018 Sep;50(9):1262-1270
pubmed: 30104763
Cell Res. 2014 Feb;24(2):177-89
pubmed: 24407421
Oncotarget. 2016 Oct 4;7(40):64527-64542
pubmed: 27590511
Nat Chem Biol. 2014 Feb;10(2):93-5
pubmed: 24316715
Cancer Cell. 2017 Apr 10;31(4):591-606.e6
pubmed: 28344040
Mol Cancer. 2018 Jul 31;17(1):109
pubmed: 30064416
Mol Cell Biol. 1988 Jun;8(6):2280-7
pubmed: 3405205
Nature. 2012 Apr 29;485(7397):201-6
pubmed: 22575960
Breast Cancer Res. 2009;11(1):R7
pubmed: 19187537
Mol Cell. 2013 Jan 10;49(1):18-29
pubmed: 23177736
Oncotarget. 2018 Feb 21;9(29):20908-20927
pubmed: 29755698
Biotechniques. 1995 Aug;19(2):192-5
pubmed: 8527134
Target Oncol. 2018 Oct;13(5):583-598
pubmed: 30229471
Oncogene. 2009 Dec 10;28(49):4353-63
pubmed: 19826413
J Cell Mol Med. 2020 Jun;24(11):6137-6148
pubmed: 32329191