Clinical performance of DNA-based prenatal screening using single-nucleotide polymorphisms approach in Thai women with singleton pregnancy.

DNA-based screening Down syndrome autosomal trisomy noninvasive prenatal screening sex chromosomal aneuploidies single nucleotide polymorphisms

Journal

Molecular genetics & genomic medicine
ISSN: 2324-9269
Titre abrégé: Mol Genet Genomic Med
Pays: United States
ID NLM: 101603758

Informations de publication

Date de publication:
07 2020
Historique:
received: 07 02 2020
revised: 22 03 2020
accepted: 24 03 2020
pubmed: 25 4 2020
medline: 1 5 2021
entrez: 25 4 2020
Statut: ppublish

Résumé

To review the performance of noninvasive prenatal screening (NIPS) using targeted single-nucleotide polymorphisms (SNPs) approach in mixed-risk Thai women. Retrospective analysis of data for detection of trisomy 21 (T21), 18 (T18), 13 (T13), monosomy X (XO), other sex chromosome aneuploidies (SCA), and triploidy/vanishing twins (VT) from a single commercial laboratory. Mean (±SD) gestational age and maternal weight were 13.2 (±2.1) weeks and 125.7 (±22.4) pounds, respectively (n = 8,572). From 462/8,572 (5.4%) no-calls; 1/462 (0.2%) was uninformative SNPs, and 1/462 chose amniocentesis. Redraw settled 323/460 (70%) samples with low fetal fraction (FF); and 8,434/8,572 (98.4%) were finally reportable, with 131 high risks (1.6%). The median (min-max) FF of reportable (n = 8,434) and unreportable samples (n = 137) samples were 10.5% (2.6-37.9) and 3.8% (1-14.1), respectively (p < .05). Fetal karyotypes were available in 106/131 (80.9%) and 52/138 (37.7%) high risk and repeated no-calls, respectively. The positive predictive values (PPVs) for T21 (n = 47), T18 (n = 15), T13 (n = 7), XO (n = 8), other SCA (n = 7), and triploidy/VT were 94%, 100%, 58.3%, 66.7%, 70%, and 57.1%, respectively. None of repeated no-calls had aneuploidies. SNP-based NIPS has high PPVs for T21 and T18. Although the proprietary SNPs library is not population-specific, uninformative SNPs are uncommon.

Sections du résumé

BACKGROUND
To review the performance of noninvasive prenatal screening (NIPS) using targeted single-nucleotide polymorphisms (SNPs) approach in mixed-risk Thai women.
METHODS
Retrospective analysis of data for detection of trisomy 21 (T21), 18 (T18), 13 (T13), monosomy X (XO), other sex chromosome aneuploidies (SCA), and triploidy/vanishing twins (VT) from a single commercial laboratory.
RESULTS
Mean (±SD) gestational age and maternal weight were 13.2 (±2.1) weeks and 125.7 (±22.4) pounds, respectively (n = 8,572). From 462/8,572 (5.4%) no-calls; 1/462 (0.2%) was uninformative SNPs, and 1/462 chose amniocentesis. Redraw settled 323/460 (70%) samples with low fetal fraction (FF); and 8,434/8,572 (98.4%) were finally reportable, with 131 high risks (1.6%). The median (min-max) FF of reportable (n = 8,434) and unreportable samples (n = 137) samples were 10.5% (2.6-37.9) and 3.8% (1-14.1), respectively (p < .05). Fetal karyotypes were available in 106/131 (80.9%) and 52/138 (37.7%) high risk and repeated no-calls, respectively. The positive predictive values (PPVs) for T21 (n = 47), T18 (n = 15), T13 (n = 7), XO (n = 8), other SCA (n = 7), and triploidy/VT were 94%, 100%, 58.3%, 66.7%, 70%, and 57.1%, respectively. None of repeated no-calls had aneuploidies.
CONCLUSION
SNP-based NIPS has high PPVs for T21 and T18. Although the proprietary SNPs library is not population-specific, uninformative SNPs are uncommon.

Identifiants

pubmed: 32329244
doi: 10.1002/mgg3.1256
pmc: PMC7336763
doi:

Types de publication

Evaluation Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1256

Informations de copyright

© 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

Références

Prenat Diagn. 2015 Apr;35(4):331-6
pubmed: 25408438
Am J Obstet Gynecol. 2014 Nov;211(5):527.e1-527.e17
pubmed: 25111587
Ultrasound Obstet Gynecol. 2013 Jan;41(1):26-32
pubmed: 23108725
Cochrane Database Syst Rev. 2017 Nov 10;11:CD011767
pubmed: 29125628
Prenat Diagn. 2013 Jun;33(6):575-9
pubmed: 23613152
Ultrasound Obstet Gynecol. 2017 Jun;49(6):689-692
pubmed: 28429561
Facts Views Vis Obgyn. 2014;6(1):7-12
pubmed: 25009720
Am J Obstet Gynecol. 2005 Aug;193(2):496-500
pubmed: 16098876
Fetal Diagn Ther. 2014;36(4):282-6
pubmed: 25228026
Am J Obstet Gynecol. 2012 Nov;207(5):374.e1-6
pubmed: 23107079
Ultrasound Int Open. 2015 Jul;1(1):E8-E11
pubmed: 27689149
Ultrasound Obstet Gynecol. 2015 Jan;45(1):10-5
pubmed: 25323392
Ultrasound Obstet Gynecol. 2019 Jan;53(1):73-79
pubmed: 30014528
BJOG. 2016 Sep;123 Suppl 3:31-5
pubmed: 27627594
J Hum Genet. 2008;53(1):74-86
pubmed: 18043865
Prenat Diagn. 2013 Jul;33(7):667-74
pubmed: 23592541
Ultrasound Obstet Gynecol. 2016 Oct;48(4):446-451
pubmed: 26611869
MLO Med Lab Obs. 2013 Jun;45(6):8, 10, 12 passim; quiz 16
pubmed: 23875437
PLoS One. 2014 Oct 07;9(10):e109173
pubmed: 25289665
Ultrasound Obstet Gynecol. 2016 Feb;47(2):177-83
pubmed: 26396068
Obstet Gynecol. 2004 Sep;104(3):545-50
pubmed: 15339767
Taiwan J Obstet Gynecol. 2013 Dec;52(4):470-4
pubmed: 24411028
Fetal Diagn Ther. 2014;35(3):212-7
pubmed: 24135152
PLoS One. 2014 May 07;9(5):e96677
pubmed: 24805989
Obstet Gynecol. 2014 Aug;124(2 Pt 1):210-8
pubmed: 25004354
BMC Bioinformatics. 2007 Dec 20;8:484
pubmed: 18093342
PLoS One. 2017 Oct 30;12(10):e0186771
pubmed: 29084245
Am J Obstet Gynecol. 2015 Jan;212(1):79.e1-9
pubmed: 25447960
Prenat Diagn. 2013 Jun;33(6):569-74
pubmed: 23592485
J Comput Biol. 2018 Sep;25(9):1040-1049
pubmed: 29932737
Prenat Diagn. 2015 Aug;35(8):810-5
pubmed: 25967380
Prenat Diagn. 2016 Mar;36(3):224-31
pubmed: 26748603
J Matern Fetal Neonatal Med. 2017 Oct;30(20):2476-2482
pubmed: 27806655
J Clin Med. 2019 Jun 28;8(7):
pubmed: 31261782
N Engl J Med. 2014 Feb 27;370(9):799-808
pubmed: 24571752
Prenat Diagn. 2012 Dec;32(13):1233-41
pubmed: 23108718
Ultrasound Obstet Gynecol. 2018 Jun;51(6):813-817
pubmed: 29484786
Mol Genet Genomic Med. 2020 Jul;8(7):e1256
pubmed: 32329244
Cochrane Database Syst Rev. 2015 Nov 25;(11):CD011202
pubmed: 26602956
J Clin Med. 2019 Aug 26;8(9):
pubmed: 31454954
Clin Biochem. 2015 Oct;48(15):932-41
pubmed: 25732593
BMC Genomics. 2012 Jul 28;13:346
pubmed: 22839760
Prenat Diagn. 2013 Jul;33(7):643-9
pubmed: 23712453
Obstet Gynecol. 2012 May;119(5):890-901
pubmed: 22362253
Clin Chem. 2005 Jan;51(1):217-9
pubmed: 15528293
Ultrasound Obstet Gynecol. 2017 Jun;49(6):815-816
pubmed: 28573775
Ultrasound Obstet Gynecol. 2015 May;45(5):530-8
pubmed: 25598039
Am J Obstet Gynecol. 2012 Apr;206(4):319.e1-9
pubmed: 22464072
J Obstet Gynaecol Res. 2017 Aug;43(8):1245-1255
pubmed: 28586143
World J Pediatr. 2017 Feb;13(1):63-69
pubmed: 27878784
Fetal Diagn Ther. 2016;40(3):219-223
pubmed: 27028530

Auteurs

Tachjaree Panchalee (T)

Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand.

Naravat Poungvarin (N)

Department of Clinical Pathology, Mahidol University, Bangkok, Thailand.

Warisa Amornrit (W)

Research Department, Mahidol University, Bangkok, Thailand.

Julaporn Pooliam (J)

Division of Clinical Epidemiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Pattarawalai Taluengjit (P)

Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand.

Tuangsit Wataganara (T)

Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH