Biomechanical stimulation effects on the metabolism of adipocyte.
adipogenesis
mitochondrial activity
static stretch
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
31
10
2019
revised:
18
03
2020
accepted:
05
04
2020
pubmed:
25
4
2020
medline:
17
3
2021
entrez:
25
4
2020
Statut:
ppublish
Résumé
Adipose tissue plays a leading role in obesity, which, in turn, can lead to Type 2 diabetes. Adipocytes (AD) respond to the biomechanical stimulation experienced in fat tissue under static stretch during prolonged sitting or lying. To investigate the effect of such chronic stimulation on adipocyte cell metabolism, we used an in vitro system to mimic the static stretch conditions. Under in vitro culture stretching, cells were analyzed at the single-cell level and we measured an increase in the projected area of the AD and higher content of lipid droplets. A decrease in the projected area of these cells' nucleus is associated with peroxisome proliferator-activated receptor-gamma expression and heterochromatin. This is the first study to reveal proteins that were altered under static stretch following a mass spectrometry analysis and main pathways that affect cell fate and metabolism. Bioinformatics analysis of the proteins indicated an increase in mitochondrial activity and associated pathways under static stretch stimulation. Quantification of the mitochondrial activity by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the ATPase related proteins specifically measured ATP5B indicated an increase in adipogenesis which points to a higher rate of cell metabolism under static stretch. In summary, our results elaborate on the metabolism of AD exposed to biomechanical stimulation, that is, associated with altered cellular protein profile and thereby influenced cell fate. The static stretch stimulation accelerated adipocyte differentiation through increased mitochondrial activity. Hence, in this study, we introduce a new perspective in understanding the molecular regulation of mechano-transduction in adipogenesis.
Substances chimiques
PPAR gamma
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8702-8713Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25-9.
Benayahu, D., Shefer, G., & Shur, I. (2009). Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues. Annals of Anatomy-Anatomischer Anzeiger, 191, 2-12.
Benayahu, D., Wiesenfeld, Y., & Sapir-Koren, R. (2019). How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate?Journal of Cellular Physiology, 234, 12133-12141.
Boguslavsky, R. L., Stewart, C. L., & Worman, H. J. (2006). Nuclear lamin A inhibits adipocyte differentiation: Implications for Dunnigan-type familial partial lipodystrophy. Human Molecular Genetics, 15, 653-663.
Chambliss, A. B., Khatau, S. B., Erdenberger, N., Robinson, D. K., Hodzic, D., Longmore, G. D., & Wirtz, D. (2013). The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Scientific Reports, 3, 1087.
D'Angelo, M. A., Gomez-Cavazos, J. S., Mei, A., Lackner, D. H., & Hetzer, M. W. (2012). A change in nuclear pore complex composition regulates cell differentiation. Developmental Cell, 22, 446-458.
David, V., Martin, A., Lafage-Proust, M., Malaval, L., Peyroche, S., Jones, D. B., … Guignandon, A. (2007). Mechanical loading downregulates peroxisome proliferator-activated receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology, 148, 2553-2562.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., … Piccolo, S. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179-183.
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677-689.
Galarza Torre, A., Shaw, J. E., Wood, A., Gilbert, H. T. J., Dobre, O., Genever, P., … Swift, J. (2018). An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Scientific Reports, 8, 8981.
Galkin, A., Dröse, S., & Brandt, U. (2006). The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. Biochimica et Biophysica Acta-Bioenergetics, 1757, 1575-1581.
Halder, G., Dupont, S., & Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 13(9), 591-600.
Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., … Itoh, H. (2011). Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Science Signaling, 4, ra3.
Huang, S.-C., Wu, T.-C., Yu, H.-C., Chen, M.-R., Liu, C.-M., Chiang, W.-S., & Lin, K. M. (2010). Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biology, 11, 18.
Imhoff, B. R., & Hansen, J. M. (2010). Extracellular redox environments regulate adipocyte differentiation. Differentiation, 80, 31-39.
Katzengold, R., Shoham, N., Benayahu, D., & Gefen, A. (2015). Simulating single cell experiments in mechanical testing of adipocytes. Biomechanics and Modeling in Mechanobiology, 14, 537-547.
Kim, B.-W., Choo, H.-J., Lee, J.-W., Kim, J.-H., & Ko, Y.-G. (2004). Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Experimental & Molecular Medicine, 36, 476-485.
Laplante, M., & Sabatini, D. M. (2009). An emerging role of mTOR in lipid biosynthesis. Current Biology, 19, R1046-R1052.
Lustig, M., Gefen, A., & Benayahu, D. (2018). Adipogenesis and lipid production in adipocytes subjected to sustained tensile deformations and elevated glucose concentration: A living cell-scale model system of diabesity. Biomechanics and Modeling in Mechanobiology, 17, 903-913.
Marom, R., Shur, I., Solomon, R., & Benayahu, D. (2005). Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. Journal of Cellular Physiology, 202, 41-48.
Mendez, M. G., & Janmey, P. A. (2012). Transcription factor regulation by mechanical stress. International Journal of Biochemistry and Cell Biology, 44, 728-732.
Mor-Yossef Moldovan, L., Lustig, M., Naftaly, A., Mardamshina, M., Geiger, T., Gefen, A., & Benayahu, D. (2019). Cell shape alteration during adipogenesis is associated with coordinated matrix cues. Journal of Cellular Physiology, 234, 3850-3863.
Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with overweight and obesity. Journal of the American Medical Association, 282, 1523.
Pajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., & Discher, D.E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15619-15624.
Shoham, N., & Gefen, A. (2012). The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures. Biomechanics and Modeling in Mechanobiology, 11, 1029-1045.
Shoham, N., Levy, A., Shabshin, N., Benayahu, D., & Gefen, A. (2017). A multiscale modeling framework for studying the mechanobiology of sarcopenic obesity. Biomechanics and Modeling in Mechanobiology, 16, 275-295.
Sorisky, A. (1999). From preadipocyte to adipocyte: Differentiation-directed signals of insulin from the cell surface to the nucleus. Critical Reviews in Clinical Laboratory Sciences, 36, 1-34.
Spiegelman, B. M., & Farmer, S. R. (1982). Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 Adipocytes. Cell, 29, 53-60.
Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C. D. P., Pinter, J., … Discher, D. E. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 341, 1240104.
Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., & Chandel, N. S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism, 14, 537-544.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., … Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731-740.
Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science (80-.), 260, 1124-1127.
Webster, M., Witkin, K. L., & Cohen-Fix, O. (2009). Sizing up the nucleus: Nuclear shape, size, and nuclear-envelope assembly. Journal of Cell Science, 122, 1477-86.
Williams, A. S., Kang, L., & Wasserman, D. H. (2015). The extracellular matrix and insulin resistance. Trends in Endocrinology and Metabolism, 26, 357-366.
Wilson-Fritch, L., Burkart, A., Bell, G., Mendelson, K., Leszyk, J., Nicoloro, S., … Corvera, S. (2003). Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Molecular and Cellular Biology, 23, 1085-1094.
Yang, C., Tibbitt, M. W., Basta, L., & Anseth, K. S. (2014). Mechanical memory and dosing influence stem cell fate. Nature Materials, 13, 645-652.
Zhang, B., Yang, Y., Keyimu, R., Hao, J., Zhao, Z., & Ye, R. (2019). The role of lamin A/C in mesenchymal stem cell differentiation. Journal of Physiology and Biochemistry, 75, 11-18.
Zink, D., Fischer, A. H., & Nickerson, J. A. (2004). Nuclear structure in cancer cells. Nature Reviews Cancer, 4, 677-687.