RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
24 04 2020
24 04 2020
Historique:
received:
13
11
2019
accepted:
09
04
2020
revised:
09
04
2020
entrez:
26
4
2020
pubmed:
26
4
2020
medline:
1
4
2021
Statut:
epublish
Résumé
The RNA methyltransferase NSUN2 has been involved in the cell proliferation and senescence, and is upregulated in various types of cancers. However, the role and potential mechanism of NSUN2 in gastric cancer remains to be determined. Our study showed that NSUN2 was significantly upregulated in gastric cancers, compared to adjacent normal gastric tissues. Moreover, NSUN2 could promote gastric cancer cell proliferation both in vitro and in vivo. Further study demonstrated that CDKN1C (p57
Identifiants
pubmed: 32332707
doi: 10.1038/s41419-020-2487-z
pii: 10.1038/s41419-020-2487-z
pmc: PMC7181747
doi:
Substances chimiques
CDKN1C protein, human
0
Cyclin-Dependent Kinase Inhibitor p57
0
RNA
63231-63-0
Methyltransferases
EC 2.1.1.-
Misu protein, mouse
EC 2.1.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
270Références
Cantara, W. A. et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195–D201 (2011).
doi: 10.1093/nar/gkq1028
Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).
doi: 10.1038/nchembio.687
Chen, X. -Y., Zhang, J. & Zhu, J. -S. The role of m(6)A RNA methylation in human cancer. Mol. Cancer 18, 103–103 (2019).
doi: 10.1186/s12943-019-1033-z
Lan, Q. et al. The critical role of RNA m(6)A Methylation in cancer. Cancer Res. 79, 1285–1292 (2019).
doi: 10.1158/0008-5472.CAN-18-2965
Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).
doi: 10.1016/j.ccell.2016.11.017
Chen, M. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270 (2018).
doi: 10.1002/hep.29683
Ma, J. Z. et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology 65, 529–543 (2017).
doi: 10.1002/hep.28885
Qian, J. -Y. et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene 38, 6123–6141 (2019).
doi: 10.1038/s41388-019-0861-z
Cai, X. et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415, 11–19 (2018).
doi: 10.1016/j.canlet.2017.11.018
Han, J. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 18, 110–110 (2019).
doi: 10.1186/s12943-019-1036-9
Yuan, W. et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol. Oncol. 13, 1559–1576 (2019).
doi: 10.1002/1878-0261.12437
Zhou, S. et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol. Carcinogenesis 57, 590–597 (2018).
doi: 10.1002/mc.22782
Liu, J. et al. m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem. Biophys. Res. Commun. 502, 456–464 (2018).
doi: 10.1016/j.bbrc.2018.05.175
Agris, P. F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep. 9, 629–635 (2008).
doi: 10.1038/embor.2008.104
Yang, X. et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).
doi: 10.1038/cr.2017.55
Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).
doi: 10.1038/s41556-019-0361-y
Blanco, S. et al. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 7, e1002403 (2011).
doi: 10.1371/journal.pgen.1002403
Okamoto, M. et al. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol. 31, 660–671 (2012).
doi: 10.1089/dna.2011.1446
Tang, H. et al. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging 7, 1143–1158 (2015).
doi: 10.18632/aging.100860
Xing, J. et al. NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation. Mol. Cell Biol. 35, 4043–4052 (2015).
doi: 10.1128/MCB.00742-15
Frye, M. & Watt, F. M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol. 16, 971–981 (2006).
doi: 10.1016/j.cub.2006.04.027
Yi, J. et al. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 8, 20751–20765 (2017).
pubmed: 27447970
Gao, Y. et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 110, 3510–3519 (2019).
doi: 10.1111/cas.14190
Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).
doi: 10.3322/caac.21262
Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J. Cancer 136, E359–E386 (2015).
doi: 10.1002/ijc.29210
Lu, L., Zhu, G., Zeng, H., Xu, Q. & Holzmann, K. High tRNA transferase NSUN2 gene expression is associated with poor prognosis in head and neck squamous carcinoma. Cancer Investig. 36, 246–253 (2018).
doi: 10.1080/07357907.2018.1466896
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).
doi: 10.1038/nrg3185
Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).
doi: 10.1016/j.cell.2016.03.014
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013
Yan, Y., Frisen, J., Lee, M. H., Massague, J. & Barbacid, M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11, 973–983 (1997).
doi: 10.1101/gad.11.8.973
Zhang, P. et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387, 151–158 (1997).
doi: 10.1038/387151a0
Ru, Y. et al. CyclinD1 and p57(kip2) as biomarkers in differentiation, metastasis and prognosis of gastric cardia adenocarcinoma. Oncotarget 8, 73860–73870 (2017).
pubmed: 29088752
pmcid: 5650307
Qiu, Z., Li, Y., Zeng, B., Guan, X. & Li, H. Downregulated CDKN1C/p57(kip2) drives tumorigenesis and associates with poor overall survival in breast cancer. Biochem. Biophys. Res. Commun. 497, 187–193 (2018).
doi: 10.1016/j.bbrc.2018.02.052
Zhang, E. et al. Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis. 7, e2109 (2016).
doi: 10.1038/cddis.2015.356
Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).
doi: 10.1038/nrm.2016.132
Zhang, X. et al. The tRNA methyltransferase NSun2 stabilizes p16INK(4) mRNA by methylating the 3’-untranslated region of p16. Nat. Commun. 3, 712 (2012).
doi: 10.1038/ncomms1692
Wang, N., Tang, H., Wang, X., Wang, W. & Feng, J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem. Biophys. Res. Commun. 493, 94–99 (2017).
doi: 10.1016/j.bbrc.2017.09.069
Li, Q. et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J. Cell. Biochem. 118, 2587–2598 (2017).
doi: 10.1002/jcb.25957
Shi, L. et al. Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer. Oncotarget 6, 12264–12278 (2015).
pubmed: 25881544
pmcid: 4494937