The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 04 2020
Historique:
received: 14 01 2020
accepted: 30 03 2020
entrez: 26 4 2020
pubmed: 26 4 2020
medline: 11 8 2020
Statut: epublish

Résumé

Persistent viruses cause chronic disease, and threaten the lives of immunosuppressed individuals. Here, we elucidate a mechanism supporting the persistence of human adenovirus (AdV), a virus that can kill immunosuppressed patients. Cell biological analyses, genetics and chemical interference demonstrate that one of five AdV membrane proteins, the E3-19K glycoprotein specifically triggers the unfolded protein response (UPR) sensor IRE1α in the endoplasmic reticulum (ER), but not other UPR sensors, such as protein kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6). The E3-19K lumenal domain activates the IRE1α nuclease, which initiates mRNA splicing of X-box binding protein-1 (XBP1). XBP1s binds to the viral E1A-enhancer/promoter sequence, and boosts E1A transcription, E3-19K levels and lytic infection. Inhibition of IRE1α nuclease interrupts the five components feedforward loop, E1A, E3-19K, IRE1α, XBP1s, E1A enhancer/promoter. This loop sustains persistent infection in the presence of the immune activator interferon, and lytic infection in the absence of interferon.

Identifiants

pubmed: 32332742
doi: 10.1038/s41467-020-15844-2
pii: 10.1038/s41467-020-15844-2
pmc: PMC7181865
doi:

Substances chimiques

Adenovirus E1A Proteins 0
Adenovirus E3 Proteins 0
IFNG protein, human 0
X-Box Binding Protein 1 0
XBP1 protein, human 0
Interferon-gamma 82115-62-6
ERN1 protein, human EC 2.7.11.1
Protein Serine-Threonine Kinases EC 2.7.11.1
Endoribonucleases EC 3.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1997

Subventions

Organisme : NCI NIH HHS
ID : R01 CA122677
Pays : United States

Références

Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).
pubmed: 19596234 doi: 10.1016/j.cell.2009.06.036 pmcid: 19596234
Randall, R. E. & Griffin, D. E. Within host RNA virus persistence: mechanisms and consequences. Curr. Opin. Virol. 23, 35–42 (2017).
pubmed: 28319790 pmcid: 5474179 doi: 10.1016/j.coviro.2017.03.001
Lynch, K. L., Gooding, L. R., Garnett-Benson, C., Ornelles, D. A. & Avgousti, D. C. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett. 593, 3551–3570 (2019).
pubmed: 31769503 pmcid: 6938402 doi: 10.1002/1873-3468.13697
Gething, M. J., McCammon, K. & Sambrook, J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46, 939–950 (1986).
pubmed: 3757030 doi: 10.1016/0092-8674(86)90076-0 pmcid: 3757030
Isler, J. A., Skalet, A. H. & Alwine, J. C. Human cytomegalovirus infection activates and regulates the unfolded protein response. J. Virol. 79, 6890–6899 (2005).
pubmed: 15890928 pmcid: 1112127 doi: 10.1128/JVI.79.11.6890-6899.2005
Cheng, G., Feng, Z. & He, B. Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J. Virol. 79, 1379–1388 (2005).
pubmed: 15650164 pmcid: 544103 doi: 10.1128/JVI.79.3.1379-1388.2005
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).
pubmed: 11779464 doi: 10.1016/S0092-8674(01)00611-0 pmcid: 11779464
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).
pubmed: 12667446 doi: 10.1016/S1097-2765(03)00105-9 pmcid: 12667446
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
doi: 10.1126/science.1209038
Korennykh, A. & Walter, P. Structural basis of the unfolded protein response. Annu Rev. Cell Dev. Biol. 28, 251–277 (2012).
pubmed: 23057742 doi: 10.1146/annurev-cellbio-101011-155826 pmcid: 23057742
Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039 (1997).
pubmed: 9323131 doi: 10.1016/S0092-8674(00)80369-4 pmcid: 9323131
Jurkin, J. et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 33, 2922–2936 (2014).
pubmed: 25378478 pmcid: 4282640 doi: 10.15252/embj.201490332
Johnston, B. P. & McCormick, C. Herpesviruses and the unfolded protein response. Viruses 12, 12–17 (2019).
doi: 10.3390/v12010017
King, C. R., Zhang, A. & Mymryk, J. S. The persistent mystery of adenovirus persistence. Trends Microbiol. 24, 323–324 (2016).
pubmed: 26916790 doi: 10.1016/j.tim.2016.02.007 pmcid: 26916790
Lion, T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 27, 441–462 (2014).
pubmed: 24982316 pmcid: 4135893 doi: 10.1128/CMR.00116-13
Hendrickx, R. et al. Innate immunity to adenovirus. Hum. Gene Ther. 25, 265–284 (2014).
pubmed: 24512150 pmcid: 3996939 doi: 10.1089/hum.2014.001
Kosulin, K. et al. Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clin. Microbiol. Infect. 22, e381–e388 (2016).
doi: 10.1016/j.cmi.2015.12.013
Schultze-Florey, R. E. et al. Persistent recipient-derived human adenovirus (HAdV)-specific T cells promote HAdV control after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 52, 609–611 (2017).
pubmed: 28067874 doi: 10.1038/bmt.2016.321 pmcid: 28067874
Lynch, J. P. 3rd & Kajon, A. E. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin. Respir. Crit. Care Med. 37, 586–602 (2016).
pubmed: 27486739 doi: 10.1055/s-0036-1584923 pmcid: 27486739
State of New Jersey Department of Health. Ongoing Adenovirus Outbreaks. (State of New Jersey Department of Health, 2019).
Berk A. J. Adenoviridae: the viruses and their replication. In: Fields Virology 6th edn, (eds. Knipe, D. M. & Howley, P. M.) (Lippincott Williams & Wilkins, 2013).
Greber, U. F. & Flatt, J. W. Adenovirus entry: from infection to immunity. Annu Rev. Virol. 6, 177–197 (2019).
pubmed: 31283442 doi: 10.1146/annurev-virology-092818-015550 pmcid: 31283442
Bauer, M. et al. The E3 ubiquitin ligase mind bomb 1 controls adenovirus genome release at the nuclear pore complex. Cell Rep. 29, 3785–3795e3788 (2019).
pubmed: 31851912 doi: 10.1016/j.celrep.2019.11.064 pmcid: 31851912
Berk, A. J. Adenovirus promoters and E1A transactivation. Annu Rev. Genet. 20, 45–79 (1986).
pubmed: 3028247 doi: 10.1146/annurev.ge.20.120186.000401 pmcid: 3028247
King, C. R., Zhang, A., Tessier, T. M., Gameiro, S. F. & Mymryk, J. S. Hacking the cell: network intrusion and exploitation by adenovirus E1A. MBio 9, e00390 (2018).
pubmed: 29717008 pmcid: 5930299 doi: 10.1128/mBio.00390-18
Jones, N. & Shenk, T. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc. Natl Acad. Sci. USA 76, 3665–3669 (1979).
pubmed: 291030 doi: 10.1073/pnas.76.8.3665 pmcid: 291030
Berk, A. J., Lee, F., Harrison, T., Williams, J. & Sharp, P. A. Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17, 935–944 (1979).
pubmed: 487437 doi: 10.1016/0092-8674(79)90333-7 pmcid: 487437
Fessler, S. P., Delgado-Lopez, F. & Horwitz, M. S. Mechanisms of E3 modulation of immune and inflammatory responses. Curr. Top. Microbiol. Immunol. 273, 113–135 (2004).
pubmed: 14674600 pmcid: 14674600
Lichtenstein, D. L., Toth, K., Doronin, K., Tollefson, A. E. & Wold, W. S. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev. Immunol. 23, 75–111 (2004).
pubmed: 14690856 doi: 10.1080/08830180490265556 pmcid: 14690856
Mashalova, E. V. et al. Prevention of hepatocyte allograft rejection in rats by transferring adenoviral early region 3 genes into donor cells. Hepatology 45, 755–766 (2007).
pubmed: 17326202 doi: 10.1002/hep.21525 pmcid: 17326202
Ginsberg, H. S. et al. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc. Natl Acad. Sci. USA 86, 3823–3827 (1989).
pubmed: 2726753 doi: 10.1073/pnas.86.10.3823 pmcid: 2726753
Burgert, H. G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41, 987–997 (1985).
pubmed: 3924414 doi: 10.1016/S0092-8674(85)80079-9 pmcid: 3924414
Andersson, M., Paabo, S., Nilsson, T. & Peterson, P. A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43, 215–222 (1985).
pubmed: 2934137 doi: 10.1016/0092-8674(85)90026-1 pmcid: 2934137
Burgert, H. G., Maryanski, J. L. & Kvist, S. “E3/19K” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc. Natl Acad. Sci. USA 84, 1356–1360 (1987).
pubmed: 2950523 doi: 10.1073/pnas.84.5.1356 pmcid: 2950523
Sester, M. et al. Conserved amino acids within the adenovirus 2 E3/19K protein differentially affect downregulation of MHC class I and MICA/B proteins. J. Immunol. 184, 255–267 (2010).
pubmed: 19949079 doi: 10.4049/jimmunol.0902343 pmcid: 19949079
Zheng, Y., Stamminger, T. & Hearing, P. E2F/Rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog. 12, e1005415 (2016).
pubmed: 26809031 pmcid: 4726734 doi: 10.1371/journal.ppat.1005415
Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A. & Kaufman, R. J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736 (2000).
pubmed: 11069889 pmcid: 317029 doi: 10.1101/gad.839400
Malhotra, J. D. & Kaufman, R. J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716–731 (2007).
pubmed: 18023214 pmcid: 2706143 doi: 10.1016/j.semcdb.2007.09.003
Wang, I. H. et al. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 14, 468–480 (2013).
pubmed: 24139403 doi: 10.1016/j.chom.2013.09.004 pmcid: 24139403
Cross, B. C. et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl Acad. Sci. USA 109, E869–E878 (2012).
pubmed: 22315414 doi: 10.1073/pnas.1115623109 pmcid: 22315414
Han, D. et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).
pubmed: 19665977 pmcid: 2762408 doi: 10.1016/j.cell.2009.07.017
White, E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20, 7836–7846 (2001).
pubmed: 11753666 doi: 10.1038/sj.onc.1204861 pmcid: 11753666
Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).
pubmed: 23487760 doi: 10.1073/pnas.1217611110 pmcid: 23487760
Thastrup, O. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin. Agents Actions 29, 8–15 (1990).
pubmed: 2139301 doi: 10.1007/BF01964706 pmcid: 2139301
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).
pubmed: 10882126 doi: 10.1016/S1097-2765(00)80330-5 pmcid: 10882126
Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).
pubmed: 10854322 doi: 10.1038/35014014 pmcid: 10854322
Amin-Wetzel, N. et al. A J-protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell 171, 1625–1637 (2017). e1613.
pubmed: 29198525 pmcid: 5733394 doi: 10.1016/j.cell.2017.10.040
Montell, C., Courtois, G., Eng, C. & Berk, A. Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36, 951–961 (1984).
pubmed: 6705049 doi: 10.1016/0092-8674(84)90045-X pmcid: 6705049
Endter, C. & Dobner, T. Cell transformation by human adenoviruses. Curr. Top. Microbiol. Immunol. 273, 163–214 (2004).
pubmed: 14674602 pmcid: 14674602
Lauter, C. B., Bailey, E. J. & Lerner, A. M. Assessment of cytosine arabinoside as an antiviral agent in humans. Antimicrob. Agents Chemother. 6, 598–602 (1974).
pubmed: 15825312 pmcid: 444699 doi: 10.1128/AAC.6.5.598
Schumann, M. & Dobbelstein, M. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny. Cancer Res. 66, 1282–1288 (2006).
pubmed: 16452180 doi: 10.1158/0008-5472.CAN-05-1484 pmcid: 16452180
Prasad, V., Suomalainen, M., Hemmi, S. & Greber, U. F. Cell cycle-dependent kinase Cdk9 is a postexposure drug target against human adenoviruses. ACS Infect. Dis. 3, 398–405 (2017).
pubmed: 28434229 doi: 10.1021/acsinfecdis.7b00009 pmcid: 28434229
Thimmappaya, B., Weinberger, C., Schneider, R. J. & Shenk, T. Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543–551 (1982).
pubmed: 6297772 doi: 10.1016/0092-8674(82)90310-5 pmcid: 6297772
Jones, N. & Shenk, T. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17, 683–689 (1979).
pubmed: 476833 doi: 10.1016/0092-8674(79)90275-7 pmcid: 476833
Yakimovich, A. et al. Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J. Virol. 86, 10123–10137 (2012).
pubmed: 22787215 pmcid: 3446567 doi: 10.1128/JVI.01102-12
Sester, M., Ruszics, Z., Mackley, E. & Burgert, H. G. The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J. Virol. 87, 6104–6117 (2013).
pubmed: 23514889 pmcid: 3648096 doi: 10.1128/JVI.03391-12
Blazanin, N. et al. ER stress and distinct outputs of the IRE1alpha RNase control proliferation and senescence in response to oncogenic Ras. Proc. Natl Acad. Sci. USA 114, 9900–9905 (2017).
pubmed: 28847931 doi: 10.1073/pnas.1701757114 pmcid: 28847931
Hasegawa, D. et al. Epithelial Xbp1 is required for cellular proliferation and differentiation during mammary gland development. Mol. Cell Biol. 35, 1543–1556 (2015).
pubmed: 25713103 pmcid: 4387219 doi: 10.1128/MCB.00136-15
Prasad, V. et al. Chemical induction of unfolded protein response enhances cancer cell killing through lytic virus infection. J. Virol. 88, 13086–13098 (2014).
pubmed: 25187554 pmcid: 4249087 doi: 10.1128/JVI.02156-14
Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).
pubmed: 17612490 doi: 10.1016/j.molcel.2007.06.011 pmcid: 17612490
Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508, 103–107 (2014).
pubmed: 24670641 pmcid: 4105133 doi: 10.1038/nature13119
Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).
pubmed: 22116878 doi: 10.1126/science.1209235 pmcid: 22116878
Valdes, A., Zhao, H., Pettersson, U. & Lind, S. B. Time-resolved proteomics of adenovirus infected cells. PLoS ONE 13, e0204522 (2018).
pubmed: 30252905 pmcid: 6155545 doi: 10.1371/journal.pone.0204522
Acosta-Alvear, D, et al. The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. Elife 7, e43036 (2018).
pubmed: 30582518 pmcid: 6336407 doi: 10.7554/eLife.43036
Karagoz, G.E., et al. An unfolded protein-induced conformational switch activates mammalian IRE1. Elife 6, e30700 (2017).
pubmed: 28971800 pmcid: 5699868 doi: 10.7554/eLife.30700
Sung, S. C., Chao, C. Y., Jeng, K. S., Yang, J. Y. & Lai, M. M. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology 387, 402–413 (2009).
pubmed: 19304306 pmcid: 7103415 doi: 10.1016/j.virol.2009.02.021
Halbleib, K. et al. Activation of the unfolded protein response by lipid bilayer stress. Mol. Cell 67, 673–684 (2017). e678.
pubmed: 28689662 doi: 10.1016/j.molcel.2017.06.012 pmcid: 28689662
Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).
pubmed: 17565364 doi: 10.1038/nrm2199 pmcid: 17565364
Meltzer, B. et al. Tat controls transcriptional persistence of unintegrated HIV genome in primary human macrophages. Virology 518, 241–252 (2018).
pubmed: 29549786 pmcid: 6021179 doi: 10.1016/j.virol.2018.03.006
Cliffe, A. R., Garber, D. A. & Knipe, D. M. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J. Virol. 83, 8182–8190 (2009).
pubmed: 19515781 pmcid: 2715743 doi: 10.1128/JVI.00712-09
Williams, J. L. et al. Lymphoid specific gene expression of the adenovirus early region 3 promoter is mediated by NF-kappa B binding motifs. EMBO J. 9, 4435–4442 (1990).
pubmed: 2148290 pmcid: 552236 doi: 10.1002/j.1460-2075.1990.tb07894.x
Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol. Cell Biol. 26, 3071–3084 (2006).
pubmed: 16581782 pmcid: 1446932 doi: 10.1128/MCB.26.8.3071-3084.2006
Bortolanza, S. et al. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther. 16, 703–712 (2009).
pubmed: 19229289 doi: 10.1038/cgt.2009.12 pmcid: 19229289
Gladwyn-Ng, I. et al. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly. Nat. Neurosci. 21, 63–71 (2018).
pubmed: 29230053 doi: 10.1038/s41593-017-0038-4 pmcid: 29230053
Yu, J., Boyapati, A. & Rundell, K. Critical role for SV40 small-t antigen in human cell transformation. Virology 290, 192–198 (2001).
pubmed: 11883184 doi: 10.1006/viro.2001.1204 pmcid: 11883184
Sirena, D., Ruzsics, Z., Schaffner, W., Greber, U. F. & Hemmi, S. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology 343, 283–298 (2005).
pubmed: 16169033 doi: 10.1016/j.virol.2005.08.024 pmcid: 16169033
Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).
pubmed: 15731329 pmcid: 549575 doi: 10.1093/nar/gni035
Hearing, P. & Shenk, T. The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 33, 695–703 (1983).
pubmed: 6871991 doi: 10.1016/0092-8674(83)90012-0 pmcid: 6871991
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
doi: 10.1126/science.1247005
Adey, A. et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500, 207–211 (2013).
pubmed: 23925245 pmcid: 3740412 doi: 10.1038/nature12064
Crameri, M. et al. MxB is an interferon-induced restriction factor of human herpesviruses. Nat. Commun. 9, 1980 (2018).
pubmed: 29773792 pmcid: 5958057 doi: 10.1038/s41467-018-04379-2
Windheim, M. et al. A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proc. Natl Acad. Sci. USA 110, E4884–E4893 (2013).
pubmed: 24218549 doi: 10.1073/pnas.1312420110 pmcid: 24218549
Hannus, M. et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 42, 8049–8061 (2014).
pubmed: 24875475 pmcid: 4081087 doi: 10.1093/nar/gku480
Menz, B., Sester, M., Koebernick, K., Schmid, R. & Burgert, H. G. Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies. Mol. Immunol. 46, 16–26 (2008).
pubmed: 18692902 doi: 10.1016/j.molimm.2008.06.019 pmcid: 18692902
Magliery, T. J. et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J. Am. Chem. Soc. 127, 146–157 (2005).
pubmed: 15631464 doi: 10.1021/ja046699g pmcid: 15631464
Cabantous, S. et al. A new protein-protein interaction sensor based on tripartite split-GFP association. Sci. Rep. 3, 2854 (2013).
pubmed: 24092409 pmcid: 3790201 doi: 10.1038/srep02854
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
pubmed: 17076895 pmcid: 1794559 doi: 10.1186/gb-2006-7-10-r100
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
pubmed: 55695 pmcid: 55695 doi: 10.1093/nar/29.9.e45
Tsunoda, T. & Takagi, T. Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999).
pubmed: 10487870 doi: 10.1093/bioinformatics/15.7.622 pmcid: 10487870

Auteurs

Vibhu Prasad (V)

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.

Maarit Suomalainen (M)

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.

Yllza Jasiqi (Y)

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.

Silvio Hemmi (S)

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.

Patrick Hearing (P)

Department of Molecular Genetics and Microbiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.

Louise Hosie (L)

University of Warwick, School of Life Sciences, Coventry, CV4 7AL, UK.
The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.

Hans-Gerhard Burgert (HG)

University of Warwick, School of Life Sciences, Coventry, CV4 7AL, UK.
Institute of Virology, University Medical Center Freiburg, 79104, Freiburg, Germany.

Urs F Greber (UF)

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. urs.greber@mls.uzh.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH