Identification of novel HNF1B mRNA splicing variants and their qualitative and semi-quantitative profile in selected healthy and tumour tissues.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 04 2020
24 04 2020
Historique:
received:
10
01
2020
accepted:
03
04
2020
entrez:
26
4
2020
pubmed:
26
4
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor crucial for the development of several tissues, and a promising biomarker of certain solid tumours. Thus far, two HNF1B alternative splicing variants (ASVs) have been described, however, the complete spectrum, prevalence and role of HNF1B ASVs in tumorigenesis are unclear. Considering the equivocal data about HNF1B ASVs and expression presented in literature, our aim was to characterize the spectrum of HNF1B mRNA splicing variants across different tissues. Here, we characterize HNF1B ASVs with high sensitivity in carcinomas of the uterine corpus, large intestine, kidney, pancreas, and prostate, with selected paired healthy tissues, using the previously described multiplex PCR and NGS approach. We identified 45 ASVs, of which 43 were novel. The spectrum and relative quantity of expressed ASVs mRNA differed among the analysed tissue types. Two known (3p, Δ7_8) and two novel (Δ7, Δ8) ASVs with unknown biological functions were detected in all the analysed tissues in a higher proportion. Our study reveals the wide spectrum of HNF1B ASVs in selected tissues. Characterization of the HNF1B ASVs is an important prerequisite for further expression studies to delineate the HNF1B splicing pattern, potential ASVs functional impact, and eventual refinement of HNF1B's biomarker role.
Identifiants
pubmed: 32332782
doi: 10.1038/s41598-020-63733-x
pii: 10.1038/s41598-020-63733-x
pmc: PMC7181708
doi:
Substances chimiques
Biomarkers
0
HNF1B protein, human
0
RNA, Messenger
0
Hepatocyte Nuclear Factor 1-beta
138674-15-4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6958Références
Cereghini, S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 10, 267–282 (1996).
doi: 10.1096/fasebj.10.2.8641560
Bartu, M. et al. The Role of HNF1B in Tumourigenesis of Solid Tumours: a Review of Current Knowledge. Folia Biol. 64, 71–83 (2018).
Yu, D. D., Guo, S. W., Jing, Y. Y., Dong, Y. L. & Wei, L. X. A review on hepatocyte nuclear factor-1beta and tumour. Cell Biosci. 5, 58, https://doi.org/10.1186/s13578-015-0049-3 (2015).
doi: 10.1186/s13578-015-0049-3
pubmed: 26464794
pmcid: 4603907
El-Khairi, R. & Vallier, L. The role of hepatocyte nuclear factor 1beta in disease and development. Diabetes Obes. Metab. 18(Suppl 1), 23–32, https://doi.org/10.1111/dom.12715 (2016).
doi: 10.1111/dom.12715
pubmed: 27615128
Pontoglio, M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J. Am. Soc. Nephrol. 11(Suppl 16), S140–143 (2000).
pubmed: 11065346
Suzuki, E. et al. Transcriptional upregulation of HNF-1beta by NF-kappaB in ovarian clear cell carcinoma modulates susceptibility to apoptosis through alteration in bcl-2 expression. Lab. Invest. 95, 962–972, https://doi.org/10.1038/labinvest.2015.73 (2015).
doi: 10.1038/labinvest.2015.73
pubmed: 26030369
Tsuchiya, A. et al. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am. J. Pathol. 163, 2503–2512 (2003).
doi: 10.1016/S0002-9440(10)63605-X
Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 13, 397–406, https://doi.org/10.1074/mcp.M113.035600 (2014).
doi: 10.1074/mcp.M113.035600
Adalat, S. et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J. Am. Soc. Nephrol. 20, 1123–1131, https://doi.org/10.1681/ASN.2008060633 (2009).
doi: 10.1681/ASN.2008060633
pubmed: 19389850
pmcid: 2678044
Anik, A., Catli, G., Abaci, A. & Bober, E. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab. 28, 251–263, https://doi.org/10.1515/jpem-2014-0384 (2015).
doi: 10.1515/jpem-2014-0384
pubmed: 25581748
Buchner, A. et al. Downregulation of HNF-1B in renal cell carcinoma is associated with tumour progression and poor prognosis. Urology 76(507), e506–511, https://doi.org/10.1016/j.urology.2010.03.042 (2010).
doi: 10.1016/j.urology.2010.03.042
Nemejcova, K. et al. Expression, Epigenetic and Genetic Changes of HNF1B in Endometrial Lesions. Pathol. Oncol. Res. 22, 523–530, https://doi.org/10.1007/s12253-015-0037-2 (2016).
doi: 10.1007/s12253-015-0037-2
pubmed: 26685938
Silva, T. D. et al. DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol. Lett. 6, 1687–1692, https://doi.org/10.3892/ol.2013.1606 (2013).
doi: 10.3892/ol.2013.1606
pubmed: 24260063
pmcid: 3834199
Matsui, A. et al. Hepatocyte nuclear factor 1 beta induces transformation and epithelial-to-mesenchymal transition. FEBS Lett. 590, 1211–1221, https://doi.org/10.1002/1873-3468.12147 (2016).
doi: 10.1002/1873-3468.12147
pubmed: 27001343
Zheng, K. L. et al. Alternative splicing of NUMB, APP and VEGFA as the features of pancreatic ductal carcinoma. Int. J. Clin. Exp. Pathol. 8, 6181–6191 (2015).
pubmed: 26261495
pmcid: 4525829
Paschalis, A. et al. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15, 663–675, https://doi.org/10.1038/s41571-018-0085-0 (2018).
doi: 10.1038/s41571-018-0085-0
pubmed: 30135575
Sevcik, J. et al. The BRCA1 alternative splicing variant Delta14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell Signal. 24, 1023–1030, https://doi.org/10.1016/j.cellsig.2011.12.023 (2012).
doi: 10.1016/j.cellsig.2011.12.023
pubmed: 22245140
Sevcik, J. et al. Expression of human BRCA1Delta17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal. 25, 1186–1193, https://doi.org/10.1016/j.cellsig.2013.02.008 (2013).
doi: 10.1016/j.cellsig.2013.02.008
pubmed: 23416467
Ross-Adams, H. et al. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget 7, 74734–74746, https://doi.org/10.18632/oncotarget.12543 (2016).
doi: 10.18632/oncotarget.12543
pubmed: 27732966
pmcid: 5342698
Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236, https://doi.org/10.1371/journal.pgen.1001236 (2010).
doi: 10.1371/journal.pgen.1001236
pubmed: 21151575
pmcid: 3000347
Harries, L. W., Brown, J. E. & Gloyn, A. L. Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One 4, e7855, https://doi.org/10.1371/journal.pone.0007855 (2009).
doi: 10.1371/journal.pone.0007855
pubmed: 19924231
pmcid: 2773013
Harries, L. W., Perry, J. R., McCullagh, P. & Crundwell, M. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10, 315, https://doi.org/10.1186/1471-2407-10-315 (2010).
doi: 10.1186/1471-2407-10-315
pubmed: 20569440
pmcid: 2908099
Carithers, L. J. et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank 13, 311–319, https://doi.org/10.1089/bio.2015.0032 (2015).
doi: 10.1089/bio.2015.0032
pubmed: 26484571
pmcid: 4675181
Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165, https://doi.org/10.1038/nrm3525 (2013).
doi: 10.1038/nrm3525
pubmed: 23385723
El Marabti, E. & Younis, I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front. Mol. Biosci. 5, 80, https://doi.org/10.3389/fmolb.2018.00080 (2018).
doi: 10.3389/fmolb.2018.00080
pubmed: 30246013
pmcid: 6137424
Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622, https://doi.org/10.1373/clinchem.2008.112797 (2009).
doi: 10.1373/clinchem.2008.112797
pubmed: 19246619
Hojny, J. et al. Multiplex PCR and NGS-based identification of mRNA splicing variants: Analysis of BRCA1 splicing pattern as a model. Gene 637, 41–49, https://doi.org/10.1016/j.gene.2017.09.025 (2017).
doi: 10.1016/j.gene.2017.09.025
pubmed: 28919163
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26, https://doi.org/10.1038/nbt.1754 (2011).
doi: 10.1038/nbt.1754
pubmed: 21221095
pmcid: 3346182