Efficacy of continuous positive airway pressure on subcutaneous adipose tissue in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials.
Continuous positive airway pressure
Meta-analysis
Obstructive sleep apnea
Randomized controlled trials
Subcutaneous adipose tissue
Journal
Sleep & breathing = Schlaf & Atmung
ISSN: 1522-1709
Titre abrégé: Sleep Breath
Pays: Germany
ID NLM: 9804161
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
24
02
2020
accepted:
31
03
2020
revised:
22
03
2020
pubmed:
26
4
2020
medline:
30
11
2021
entrez:
26
4
2020
Statut:
ppublish
Résumé
It remains inconclusive whether continuous positive airway pressure (CPAP) therapy can significantly reduce subcutaneous adipose tissue (SAT) in patients with obstructive sleep apnea (OSA). This meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the impact of CPAP treatment on SAT in patients with OSA. We searched Pubmed, Cochrane, Web of Science, and Embase for RCTs, which investigated the effectiveness of CPAP treatment in reducing SAT among patients with OSA. Following the PRISMA guidelines, we extracted information on the study and patient characteristics, and pre- and post-CPAP measures of SAT. We then calculated the overall effects using the standardized mean difference (SMD) with a 95% confidence interval (CI). A total of 5 RCTs (comprising 153 patients) met inclusion criteria for the meta-analysis. We found that the SAT did not change before and after CPAP treatment in patients with OSA (SMD = - 0.02, 95% CI - 0.25 to 0.2, z = 0.19, p = 0.85). Subgroup analyses indicated that the outcome was not affected by age, CPAP therapy duration, baseline body mass index, and measure utilized. This meta-analysis of RCTs suggests that CPAP therapy does not significantly decrease the level of SAT among patients with OSA. Further large-scale, and high-quality randomized controlled trials are needed to better address this issue.
Identifiants
pubmed: 32333260
doi: 10.1007/s11325-020-02078-1
pii: 10.1007/s11325-020-02078-1
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-8Références
Sharma RA, Varga AW, Bubu OM, Pirraglia E, Kam K, Parekh A, Wohlleber M, Miller MD, Andrade A, Lewis C, Tweardy S, Buj M, Yau PL, Sadda R, Mosconi L, Li Y, Butler T, Glodzik L, Fieremans E, Babb JS, Blennow K, Zetterberg H, Lu SE, Badia SG, Romero S, Rosenzweig I, Gosselin N, Jean-Louis G, Rapoport DM, de Leon MJ, Ayappa I, Osorio RS (2018) Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. Am J Respir Crit Care Med 197:933–943. https://doi.org/10.1164/rccm.201704-0704OC
doi: 10.1164/rccm.201704-0704OC
pubmed: 29125327
pmcid: 6020410
Wächter M, Kantelhardt JW, Bonsignore MR, Bouloukaki I, Escourrou P, Fietze I, Grote L, Korzybski D, Lombardi C, Marrone O, Paranicova I, Pataka A, Ryan S, Schiza SE, Sliwinski P, Steiropoulos P, Verbraecken J, Penzel T, Steiropoulos P, Verbraecken J, Petiet E, Trakada G, Montserrat JM, Fietze I, Penzel T, Ludka O, RodensteinCliniques D, Masa JF, Bouloukaki I, Schiza S, Kent B, McNicholas WT, Ryan S, Riha RL, Kvamme JA, Grote L, Hedner J, Pépin JL, Bailly S, Lavie L, Lavie P, Basoglu OK, Tasbakan MS, Varoneckas G, Joppa P, Tkacova R, Staats R, Barbé F, Lombardi C, Parati G, Drummond M, Zeller M, Bonsignore MR, Marrone O (2019) Unique sleep-stage transitions determined by obstructive sleep apnea severity, age and gender. J Sleep Res 29:e12895. https://doi.org/10.1111/jsr.12895
doi: 10.1111/jsr.12895
pubmed: 31347213
Gaines J, Vgontzas AN, Fernandez-Mendoza J, Bixler EO (2018) Obstructive sleep apnea and the metabolic syndrome: the road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med Rev 42:211–219. https://doi.org/10.1016/j.smrv.2018.08.009
doi: 10.1016/j.smrv.2018.08.009
pubmed: 30279095
pmcid: 6221996
Wang F, Xiong X, Xu H, Huang H, Shi Y, Li X, Qian Y, Zou J, Yi H, Guan J, Yin S (2019) The association between obstructive sleep apnea syndrome and metabolic syndrome: a confirmatory factor analysis. Sleep Breath 23:1011–1019. https://doi.org/10.1007/s11325-019-01804-8
doi: 10.1007/s11325-019-01804-8
pubmed: 30820851
Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JJ, Garcia FA, Herzstein J, Kemper AR, Krist AH, Kurth AE, Landefeld CS, Mangione CM, Phillips WR, Phipps MG, Pignone MP, Silverstein M, Tseng CW (2017) Screening for obstructive sleep apnea in adults: US preventive services task force recommendation statement. JAMA 317:407–414. https://doi.org/10.1001/jama.2016.20325
doi: 10.1001/jama.2016.20325
pubmed: 28118461
pmcid: 28118461
Durán-Cantolla J, Aizpuru F, Martínez-Null C, Barbé-Illa F (2009) Obstructive sleep apnea/hypopnea and systemic hypertension. Sleep Med Rev 13:323–331. https://doi.org/10.1016/j.smrv.2008.11.001
doi: 10.1016/j.smrv.2008.11.001
pubmed: 19515590
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip M, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pepin JL, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7:687–698. https://doi.org/10.1016/S2213-2600(19)30198-5
doi: 10.1016/S2213-2600(19)30198-5
pubmed: 7007763
pmcid: 7007763
Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G (2013) Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol 62:569–576. https://doi.org/10.1016/j.jacc.2013.05.045
doi: 10.1016/j.jacc.2013.05.045
pubmed: 23770180
pmcid: 4461232
Frayn KN, Karpe F (2014) Regulation of human subcutaneous adipose tissue blood flow. Int J Obes 38:1019–1026. https://doi.org/10.1038/ijo.2013.200
doi: 10.1038/ijo.2013.200
Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK (2010) Interactions between obesity and obstructive sleep apnea: implications for treatment. CHEST 137:711–719. https://doi.org/10.1378/chest.09-0360
doi: 10.1378/chest.09-0360
pubmed: 20202954
pmcid: 3021364
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RS, O'Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116:39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355
doi: 10.1161/CIRCULATIONAHA.106.675355
Patel P, Abate N (2013) Body fat distribution and insulin resistance. NUTRIENTS 5:2019–2027. https://doi.org/10.3390/nu5062019
doi: 10.3390/nu5062019
pubmed: 23739143
pmcid: 3725490
Liu KH, Chu WC, To KW, Ko FW, Ng SS, Ngai JC, Chan JW, Ahuja AT, Hui DS (2014) Mesenteric fat thickness is associated with increased risk of obstructive sleep apnoea. Respirology 19:92–97. https://doi.org/10.1111/resp.12164
doi: 10.1111/resp.12164
pubmed: 23927388
Richards KC, Gooneratne N, Dicicco B, Hanlon A, Moelter S, Onen F, Wang Y, Sawyer A, Weaver T, Lozano A, Carter P, Johnson J (2019) CPAP adherence may slow 1-year cognitive decline in older adults with mild cognitive impairment and apnea. J Am Geriatr Soc 67:558–564. https://doi.org/10.1111/jgs.15758
doi: 10.1111/jgs.15758
pubmed: 30724333
pmcid: 6402995
Pamidi S, Wroblewski K, Stepien M, Sharif-Sidi K, Kilkus J, Whitmore H, Tasali E (2015) Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. Am J Respir Crit Care Med 192:96–105. https://doi.org/10.1164/rccm.201408-1564OC
doi: 10.1164/rccm.201408-1564OC
pubmed: 25897569
pmcid: 4511421
Myllylä M, Hammais A, Stepanov M, Anttalainen U, Saaresranta T, Laitinen T (2019) Nonfatal and fatal cardiovascular disease events in CPAP compliant obstructive sleep apnea patients. Sleep Breath 23:1209–1217. https://doi.org/10.1007/s11325-019-01808-4
doi: 10.1007/s11325-019-01808-4
pubmed: 30848437
pmcid: 6868046
Nicholl DDM, Hanly PJ, Zalucky AA, Mann MC, MacRae JM, Poulin MJ, Handley GB, Sola DY, Ahmed SB (2018) CPAP therapy delays cardiovagal reactivation and decreases arterial renin-angiotensin system activity in humans with obstructive sleep apnea. J Clin Sleep Med 14:1509–1520. https://doi.org/10.5664/jcsm.7326
doi: 10.5664/jcsm.7326
pubmed: 30176965
pmcid: 6134233
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535
doi: 10.1136/bmj.b2535
pubmed: 2714657
pmcid: 2714657
Kritikou I, Basta M, Tappouni R, Pejovic S, Fernandez-Mendoza J, Nazir R, Shaffer ML, Liao D, Bixler EO, Chrousos GP, Vgontzas AN (2013) Sleep apnoea and visceral adiposity in middle-aged male and female subjects. Eur Respir J 41:601–609. https://doi.org/10.1183/09031936.00183411
doi: 10.1183/09031936.00183411
pubmed: 22743670
Zhao X, Xu H, Qian Y, Liu Y, Zou J, Yi H, Guan J, Yin S (2019) Abdominal obesity is more strongly correlated with obstructive sleep apnea than general obesity in China: results from two separated observational and longitudinal studies. Obes Surg 29:2535–2547. https://doi.org/10.1007/s11695-019-03870-z
doi: 10.1007/s11695-019-03870-z
pubmed: 31111342
Shinohara E, Kihara S, Ouchi N, Funahashi T, Nakamura T, Yamashita S, Kameda-Takemura K, Matsuzawa Y (1998) Troglitazone suppresses intimal formation following balloon injury in insulin-resistant Zucker fatty rats. ATHEROSCLEROSIS 136:275–279. https://doi.org/10.1016/s0021-9150(97)00220-7
doi: 10.1016/s0021-9150(97)00220-7
pubmed: 9543098
Hudgel DW, Patel SR, Ahasic AM, Bartlett SJ, Bessesen DH, Coaker MA, Fiander PM, Grunstein RR, Gurubhagavatula I, Kapur VK, Lettieri CJ, Naughton MT, Owens RL, Pepin JL, Tuomilehto H, Wilson KC (2018) The role of weight management in the treatment of adult obstructive sleep apnea. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 198:e70–e87. https://doi.org/10.1164/rccm.201807-1326ST
doi: 10.1164/rccm.201807-1326ST
pubmed: 30215551
Sutherland K, Lee RW, Phillips CL, Dungan G, Yee BJ, Magnussen JS, Grunstein RR, Cistulli PA (2011) Effect of weight loss on upper airway size and facial fat in men with obstructive sleep apnoea. Thorax 66:797–803. https://doi.org/10.1136/thx.2010.151613
doi: 10.1136/thx.2010.151613
pubmed: 21680567
Shechter A, Airo M, Valentin J, Dugas NC, Abdalla M, St-Onge MP, Louh IK (2019) Effects of continuous positive airway pressure on body composition in individuals with obstructive sleep apnea: a non-randomized, matched before-after study. J Clin Med 8. https://doi.org/10.3390/jcm8081195
Ryan S, Crinion SJ, McNicholas WT (2014) Obesity and sleep-disordered breathing--when two ‘bad guys’ meet. QJM 107:949–954. https://doi.org/10.1093/qjmed/hcu029
doi: 10.1093/qjmed/hcu029
pubmed: 24509235
Jun J, Savransky V, Nanayakkara A, Bevans S, Li J, Smith PL, Polotsky VY (2008) Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol 295:R1274–R1281. https://doi.org/10.1152/ajpregu.90346.2008
doi: 10.1152/ajpregu.90346.2008
pubmed: 18703411
pmcid: 2576102
Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T, Konturek PC, Ficker JH (2004) Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 169:156–162. https://doi.org/10.1164/rccm.200302-206OC
doi: 10.1164/rccm.200302-206OC
pubmed: 14512265
Grunstein RR (1996) Metabolic aspects of sleep apnea. SLEEP 19:S218–S220. https://doi.org/10.1093/sleep/19.suppl_10.s218
doi: 10.1093/sleep/19.suppl_10.s218
pubmed: 9085515
Mohsenin V (2001) Gender differences in the expression of sleep-disordered breathing : role of upper airway dimensions. CHEST 120:1442–1447. https://doi.org/10.1378/chest.120.5.1442
doi: 10.1378/chest.120.5.1442
pubmed: 11713117
Bradley TD, Brown IG, Grossman RF, Zamel N, Martinez D, Phillipson EA, Hoffstein V (1986) Pharyngeal size in snorers, nonsnorers, and patients with obstructive sleep apnea. N Engl J Med 315:1327–1331. https://doi.org/10.1056/NEJM198611203152105
doi: 10.1056/NEJM198611203152105
pubmed: 3773955
Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11:163–178. https://doi.org/10.1016/j.smrv.2007.01.002
doi: 10.1016/j.smrv.2007.01.002
pubmed: 17442599
pmcid: 1991337
Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141:846–850. https://doi.org/10.7326/0003-4819-141-11-200412070-00008
doi: 10.7326/0003-4819-141-11-200412070-00008
pubmed: 15583226
Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodes-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049. https://doi.org/10.1161/ATVBAHA.107.159228
doi: 10.1161/ATVBAHA.107.159228
pubmed: 18356555
Schafer H, Pauleit D, Sudhop T, Gouni-Berthold I, Ewig S, Berthold HK (2002) Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea. Chest 122:829–839
doi: 10.1378/chest.122.3.829
Liu Y, Zou J, Li X, Zhao X, Zou J, Liu S, Meng L, Qian Y, Xu H, Yi H, Guan J, Yin S (2019) Effect of the interaction between obstructive sleep apnea and lipoprotein(a) on insulin resistance: a large-scale cross-sectional study. J Diabetes Res 2019:9583286. https://doi.org/10.1155/2019/9583286
doi: 10.1155/2019/9583286
pubmed: 31089476
pmcid: 6476125
Ronksley PE, Hemmelgarn BR, Heitman SJ, Hanly PJ, Faris PD, Quan H, Tsai WH (2009) Obstructive sleep apnoea is associated with diabetes in sleepy subjects. Thorax 64:834–839. https://doi.org/10.1136/thx.2009.115105
doi: 10.1136/thx.2009.115105
pubmed: 19679579
Abud R, Salgueiro M, Drake L, Reyes T, Jorquera J, Labarca G (2019) Efficacy of continuous positive airway pressure (CPAP) preventing type 2 diabetes mellitus in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and insulin resistance: a systematic review and meta-analysis. Sleep Med 62:14–21. https://doi.org/10.1016/j.sleep.2018.12.017
doi: 10.1016/j.sleep.2018.12.017
pubmed: 31518943
Martinez-Ceron E, Fernandez-Navarro I, Garcia-Rio F (2016) Effects of continuous positive airway pressure treatment on glucose metabolism in patients with obstructive sleep apnea. Sleep Med Rev 25:121–130. https://doi.org/10.1016/j.smrv.2015.03.002
doi: 10.1016/j.smrv.2015.03.002
pubmed: 26146025
Monteiro L, Pereira J, Palhinha L, Moraes-Vieira P (2019) Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 106:703–716. https://doi.org/10.1002/JLB.MR1218-478R
doi: 10.1002/JLB.MR1218-478R
pubmed: 31087711
Tinggaard J, Hagen CP, Christensen AN, Mouritsen A, Mieritz MG, Wohlfahrt-Veje C, Helge JW, Beck TN, Fallentin E, Larsen R, Jensen RB, Juul A, Main KM (2017) Anthropometry, DXA, and leptin reflect subcutaneous but not visceral abdominal adipose tissue on MRI in 197 healthy adolescents. Pediatr Res 82:620–628. https://doi.org/10.1038/pr.2017.138
doi: 10.1038/pr.2017.138
pubmed: 28604756
Shechter A (2016) Effects of continuous positive airway pressure on energy balance regulation: a systematic review. Eur Respir J 48:1640–1657. https://doi.org/10.1183/13993003.00689-2016
doi: 10.1183/13993003.00689-2016
pubmed: 27824596
pmcid: 5201109
Catala R, Ferre R, Sangenis S, Cabre A, Hernandez-Flix S, Masana L (2016) Intraabdominal fat redistribution in long-term continuous positive airway pressure treatment in obstructive sleep apnea patients. Med Clin (Barc) 146:484–487. https://doi.org/10.1016/j.medcli.2015.12.010
doi: 10.1016/j.medcli.2015.12.010
Trenell MI, Ward JA, Yee BJ, Phillips CL, Kemp GJ, Grunstein RR, Thompson CH (2007) Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome. Diabetes Obes Metab 9:679–687. https://doi.org/10.1111/j.1463-1326.2006.00649.x
doi: 10.1111/j.1463-1326.2006.00649.x
pubmed: 17697060
Hoyos CM, Killick R, Yee BJ, Phillips CL, Grunstein RR, Liu PY (2012) Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. THORAX 67:1081–1089. https://doi.org/10.1136/thoraxjnl-2011-201420
doi: 10.1136/thoraxjnl-2011-201420
pubmed: 22561530
Lam JC, Lam B, Yao TJ, Lai AY, Ooi CG, Tam S, Lam KS, Ip MS (2010) A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J 35:138–145. https://doi.org/10.1183/09031936.00047709
doi: 10.1183/09031936.00047709
pubmed: 19608589
Ng SS, Liu EK, Ma RC, Chan TO, To KW, Chan KK, Ngai J, Yip WH, Ko FW, Wong CK, Hui DS (2017) Effects of CPAP therapy on visceral fat thickness, carotid intima-media thickness and adipokines in patients with obstructive sleep apnoea. Respirology 22:786–792. https://doi.org/10.1111/resp.12963
doi: 10.1111/resp.12963
pubmed: 27933703
Sivam S, Phillips CL, Trenell MI, Yee BJ, Liu PY, Wong KK, Grunstein RR (2012) Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J 40:913–918. https://doi.org/10.1183/09031936.00177011
doi: 10.1183/09031936.00177011
pubmed: 22267762