Magnetic Anisotropy in Divalent Lanthanide Compounds.

ab initio calculations divalent charge lanthanides magnetization blocking barrier

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
27 Jul 2020
Historique:
received: 05 03 2020
pubmed: 28 4 2020
medline: 28 4 2020
entrez: 28 4 2020
Statut: ppublish

Résumé

Complexes of trivalent lanthanides (Ln) are known to possess strong magnetic anisotropy, which enables them to be efficient single-molecule magnets. High-level ab initio calculations are reported for [LnO] (where Ln is terbium (Tb), dysprosium (Dy), or holmium (Ho)), which show that divalent lanthanides can exhibit equally strong magnetic anisotropy and magnetization blocking barriers. In particular, detailed calculations predict a multilevel magnetization blocking barrier exceeding 3000 K for a [DyO] complex deposited on a hexagonal boron nitride (h-BN) surface, bringing the expected performance of single-molecule magnets to a qualitatively new level compared to the current state-of-the art complexes.

Identifiants

pubmed: 32338815
doi: 10.1002/anie.202003399
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12720-12724

Subventions

Organisme : NATIONAL SUPERCOMPUTING CENTRE (NSCC) SINGAPORE
ID : ASPIRE-1, grant 11001278
Organisme : National University of Singapore
ID : R-143-000-A80-114 and R-143-000-A65-133

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006.
L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179-186.
M. N. Leuenberger, D. Loss, Nature 2001, 410, 789-793.
 
D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110-5148;
Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH, Weinheim, 2015.
 
Z. H. Zhu, M. Guo, X. L. Li, J. K. Tang, Coord. Chem. Rev. 2019, 378, 350-364;
P. Zhang, L. Zhang, C. Wang, S. F. Xue, S. Y. Lin, J. K. Tang, J. Am. Chem. Soc. 2014, 136, 4484-4487;
M. Gregson, N. F. Chilton, A. M. Ariciu, F. Tuna, I. F. Crowe, W. Lewis, A. J. Blake, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, S. T. Liddle, Chem. Sci. 2016, 7, 155-165;
P. Zhang, M. Perfetti, M. Kern, P. P. Hallmen, L. Ungur, S. Lenz, M. R. Ringenberg, W. Frey, H. Stoll, G. Rauhut, J. van Slageren, Chem. Sci. 2018, 9, 1221-1230;
M. A. Sorensen, U. B. Hansen, M. Perfetti, K. S. Pedersen, E. Bartolome, G. G. Simeoni, H. Mutka, S. Rols, M. Jeong, I. Zivkovic, M. Retuerto, A. Arauzo, J. Bartolome, S. Piligkos, H. Weihe, L. H. Doerrer, J. van Slageren, H. M. Ronnow, K. Lefmann, J. Bendix, Nat. Commun. 2018, 9, 9;
E. Lucaccini, M. Briganti, M. Perfetti, L. Vendier, J. P. Costes, F. Totti, R. Sessoli, L. Sorace, Chem. Eur. J. 2016, 22, 5552-5562;
M. Perfetti, E. Lucaccini, L. Sorace, J. P. Costes, R. Sessoli, Inorg. Chem. 2015, 54, 3090-3092;
X. H. Yi, K. Bernot, F. Pointillart, G. Poneti, G. Calvez, C. Daiguebonne, O. Guillou, R. Sessoli, Chem. Eur. J. 2012, 18, 11379-11387;
A. J. Ryan, L. E. Darago, S. G. Balasubramani, G. P. Chen, J. W. Ziller, F. Furche, J. R. Long, W. J. Evans, Chem. Eur. J. 2018, 24, 7702-7709;
C. A. Gould, L. E. Darago, M. I. Gonzalez, S. Demir, J. R. Long, Angew. Chem. Int. Ed. 2017, 56, 10103-10107;
Angew. Chem. 2017, 129, 10237-10241;
S. Demir, M. I. Gonzalez, L. E. Darago, W. J. Evans, J. R. Long, Nat. Commun. 2017, 8, 9;
K. R. Meihaus, M. E. Fieser, J. F. Corbey, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2015, 137, 9855-9860;
K. R. Meihaus, J. F. Corbey, M. Fang, J. W. Ziller, J. R. Long, W. J. Evans, Inorg. Chem. 2014, 53, 3099-3107;
J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078-2085;
J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538-542;
J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236-14239;
X. J. Zhang, S. Liu, V. Vieru, N. Xu, C. Gao, B. W. Wang, W. Shi, L. F. Chibotaru, S. Gao, P. Cheng, A. K. Powell, Chem. Eur. J. 2018, 24, 6079-6086;
J. F. Wu, L. Zhao, L. Zhang, X. L. Li, M. Guo, A. K. Powell, J. K. Tang, Angew. Chem. Int. Ed. 2016, 55, 15574-15578;
Angew. Chem. 2016, 128, 15803-15807;
K. Liu, X. J. Zhang, X. X. Meng, W. Shi, P. Cheng, A. K. Powell, Chem. Soc. Rev. 2016, 45, 2423-2439;
M. Gysler, F. El Hallak, L. Ungur, R. Marx, M. Hakl, P. Neugebauer, Y. Rechkemmer, Y. H. Lan, I. Sheikin, M. Orlita, C. E. Anson, A. K. Powell, R. Sessoli, L. F. Chibotaru, J. van Slageren, Chem. Sci. 2016, 7, 4347-4354;
J. L. Liu, J. Y. Wu, Y. C. Chen, V. Mereacre, A. K. Powell, L. Ungur, L. F. Chibotaru, X. M. Chen, M. L. Tong, Angew. Chem. Int. Ed. 2014, 53, 12966-12970;
Angew. Chem. 2014, 126, 13180-13184;
M. Vonci, M. J. Giansiracusa, W. Van den Heuvel, R. W. Gable, B. Moubaraki, K. S. Murray, D. H. Yu, R. A. Mole, A. Soncini, C. Boskovic, Inorg. Chem. 2017, 56, 378-394;
K. R. Vignesh, A. Soncini, S. K. Langley, W. Wernsdorfer, K. S. Murray, G. Rajaraman, Nat. Commun. 2017, 8, 1023;
J. H. Jia, Q. W. Li, Y. C. Chen, J. L. Liu, M. L. Tong, Coord. Chem. Rev. 2019, 378, 365-381;
J. L. Liu, Y. C. Chen, M. L. Tong, Chem. Soc. Rev. 2018, 47, 2431-2453;
F. S. Guo, B. M. Day, Y. C. Chen, M. L. Tong, A. Mansikkamaki, R. A. Layfield, Science 2018, 362, 1400-1403;
M. Feng, M. L. Tong, Chem. Eur. J. 2018, 24, 7574-7594;
N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694-8695.
 
H. L. C. Feltham, Y. Lan, F. Klöwer, L. Ungur, L. F. Chibotaru, A. K. Powell, S. Brooker, Chem. Eur. J. 2011, 17, 4362-4365;
L. Ungur, L. F. Chibotaru, Inorg. Chem. 2016, 55, 10043-10056.
L. Ungur, L. F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086-20090.
 
W. J. Evans, Polyhedron 1987, 6, 803-835;
C. Eaborn, P. B. Hitchcock, K. Izod, J. D. Smith, J. Am. Chem. Soc. 1994, 116, 12071-12072;
G. Z. Qi, Y. Nitto, A. Saiki, T. Tomohiro, Y. Nakayama, H. Yasuda, Tetrahedron 2003, 59, 10409-10418;
N. F. Chilton, C. A. P. Goodwin, D. P. Mills, R. E. P. Winpenny, Chem. Commun. 2015, 51, 101-103;
M. Xémard, A. Jaoul, M. Cordier, F. Molton, O. Cador, B. Le Guennic, C. Duboc, O. Maury, C. Clavaguera, G. Nocton, Angew. Chem. Int. Ed. 2017, 56, 4266-4271;
Angew. Chem. 2017, 129, 4330-4335.
 
M. R. MacDonald, J. E. Bates, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2012, 134, 8420-8423;
M. E. Fieser, M. R. MacDonald, B. T. Krull, J. E. Bates, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2015, 137, 369-382.
In previous work, the multiplet spectrum of [DyO]+ was calculated within CASSCF approximation, which is a suitable approximation for the ordinary lanthanide complexes but underestimates the metal-ligand covalency in diatomic compounds because of their much shorter M-L distances. For the sake of comparision with compounds investigated here, the multiplet spectrum of [DyO]+ has been recalculated within a higher (CASPT2) approximation (Figure S2). Qualitatively, a similar shape of magnetization blocking barriers is obtained by both approximations; however, the present calculation produces a barrier that is higher by ca. 1000 cm−1. For further information, see Ref. [7].
R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673-678.
Y. N. Guo, L. Ungur, G. E. Granroth, A. K. Powell, C. J. Wu, S. E. Nagler, J. K. Tang, L. F. Chibotaru, D. M. Cui, Sci. Rep. 2014, 4, 5471.
J. Liu, Y. C. Chen, J. L. Liu, V. Vieru, L. Ungur, J. H. Jia, L. F. Chibotaru, Y. H. Lan, W. Wernsdorfer, S. Gao, X. M. Chen, M. L. Tong, J. Am. Chem. Soc. 2016, 138, 5441-5450.
 
F. S. Guo, B. M. Day, Y. C. Chen, M. L. Tong, A. Mansikkamaki, R. A. Layfield, Angew. Chem. Int. Ed. 2017, 56, 11445-11449;
Angew. Chem. 2017, 129, 11603-11607;
C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature 2017, 548, 439-442;
K. R. McClain, C. A. Gould, K. Chakarawet, S. J. Teat, T. J. Groshens, J. R. Long, B. G. Harvey, Chem. Sci. 2018, 9, 8492-8503.
 
A. N. Kulikov, L. A. Kaledin, A. I. Kobyliansky, L. V. Gurvich, Can. J. Phys. 1984, 62, 1855-1870;
C. Linton, D. M. Gaudet, H. Schall, J. Mol. Spectrosc. 1986, 115, 58-73;
Y. C. Liu, C. Linton, H. Schall, R. W. Field, J. Mol. Spectrosc. 1984, 104, 72-88.
L. Ungur, M. Thewissen, J. P. Costes, W. Wernsdorfer, L. F. Chibotaru, Inorg. Chem. 2013, 52, 6328-6337.
I. Gallardo, A. Arnau, F. Delgado, R. Baltic, A. Singha, F. Donati, C. Wäckerlin, J. Dreiser, S. Rusponi, H. Brune, New J. Phys. 2019, 21, 073053.
F. Donati, S. Rusponi, S. Stepanow, C. Wäckerlin, A. Singha, L. Persichetti, R. Baltic, K. Diller, F. Patthey, E. Fernandez, J. Dreiser, Z. Sljivancanin, K. Kummer, C. Nistor, P. Gambardella, H. Brune, Science 2016, 352, 318-321.

Auteurs

Weibing Zhang (W)

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

Almas Muhtadi (A)

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

Naoya Iwahara (N)

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Liviu Ungur (L)

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

Liviu F Chibotaru (LF)

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

Classifications MeSH