CD41-deficient exosomes from non-traumatic femoral head necrosis tissues impair osteogenic differentiation and migration of mesenchymal stem cells.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
27 04 2020
Historique:
received: 02 01 2020
accepted: 10 04 2020
revised: 09 04 2020
entrez: 29 4 2020
pubmed: 29 4 2020
medline: 1 4 2021
Statut: epublish

Résumé

Non-traumatic osteonecrosis of the femoral head (ONFH) is clinically a devastating and progressive disease without an effective treatment. Mesenchymal stem cells (MSCs) transplantation has been used to treat ONFH in early stage, but the failure rate of this therapy is high due to the reduced osteogenic differentiation and migration of the transplanted MSCs related with pathological bone tissues. However, the mechanism responsible for this decrease is still unclear. Therefore, we assume that the implanted MSCs might be influenced by signals delivered from pathological bone tissue, where the exosomes might play a critical role in this delivery. This study showed that exosomes from ONFH bone tissues (ONFH-exos) were able to induce GC-induced ONFH-like damage, in vivo and impair osteogenic differentiation and migration of MSCs, in vitro. Then, we analyzed the differentially expressed proteins (DEPs) in ONFH-exos using proteomic technology and identified 842 differentially expressed proteins (DEPs). On the basis of gene ontology (GO) enrichment analysis of DEPs, fold-changes and previous report, cell adhesion-related CD41 (integrin α2b) was selected for further investigation. Our study showed that the CD41 (integrin α2b) was distinctly decreased in ONFH-exos, compared to NOR-exos, and downregulation of CD41 could impair osteogenic differentiation and migration of the MSCs, where CD41-integrin β3-FAK-Akt-Runx2 pathway was involved. Finally, our study further suggested that CD41-affluent NOR-exos could restore the glucocorticoid-induced decline of osteogenic differentiation and migration in MSCs, and prevent GC-induced ONFH-like damage in rat models. Taken together, our study results revealed that in the progress of ONFH, exosomes from the pathological bone brought about the failure of MSCs repairing the necrotic bone for lack of some critical proteins, like integrin CD41, and prompted the progression of experimentally induced ONFH-like status in the rat. CD41 could be considered as the target of early diagnosis and therapy in ONFH.

Identifiants

pubmed: 32341357
doi: 10.1038/s41419-020-2496-y
pii: 10.1038/s41419-020-2496-y
pmc: PMC7184624
doi:

Substances chimiques

Platelet Membrane Glycoprotein IIb 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

293

Références

Lei, P. et al. Free vascularized iliac bone flap based on deep circumflex iliac vessels graft for the treatment of osteonecrosis of femoral head. J. Orthop. Surg. Res. 14, 397 (2019).
pubmed: 31779640 pmcid: 6883673 doi: 10.1186/s13018-019-1440-2
Zhao, D., Liu, Y., Ma, C., Gu, G. & Han, D. F. A Mini Review: Stem cell therapy for osteonecrosis of the femoral head and pharmacological aspects. Curr. Pharm. Des. 25, 1099–1104 (2019).
pubmed: 31131747 doi: 10.2174/1381612825666190527092948 pmcid: 31131747
Chughtai, M. et al. An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Jt. J. 99-B, 1267–1279 (2017).
doi: 10.1302/0301-620X.99B10.BJJ-2017-0233.R2
Liu, F. et al. An epidemiological study of etiology and clinical characteristics in patients with nontraumatic osteonecrosis of the femoral head. J. Res. Med. Sci. 22, 15 (2017).
pubmed: 28458706 pmcid: 5367210 doi: 10.4103/1735-1995.200273
Lee, Y. J., Cui, Q. & Koo, K. H. Is there a role of pharmacological treatments in the prevention or treatment of osteonecrosis of the femoral head?: a systematic review. J. Bone Metab. 26, 13–18 (2019).
pubmed: 30899719 pmcid: 6416144 doi: 10.11005/jbm.2019.26.1.13
Hernigou, P. et al. Cell therapy versus simultaneous contralateral decompression in symptomatic corticosteroid osteonecrosis: a thirty year follow-up prospective randomized study of one hundred and twenty five adult patients. Int Orthop. 42, 1639–1649 (2018).
pubmed: 29744647 doi: 10.1007/s00264-018-3941-8 pmcid: 29744647
Fang, S., Li, Y. & Chen, P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des. Devel. Ther. 13, 45–55 (2019).
pubmed: 30587927 doi: 10.2147/DDDT.S178698 pmcid: 30587927
Xie, Y., Hu, J. Z. & Shi, Z. Y. MiR-181d promotes steroid-induced osteonecrosis of the femoral head by targeting SMAD3 to inhibit osteogenic differentiation of hBMSCs. Eur. Rev. Med. Pharm. Sci. 22, 4053–4062 (2018).
Wu, F. et al. Hypermethylation of Frizzled1 is associated with Wnt/beta-catenin signaling inactivation in mesenchymal stem cells of patients with steroid-associated osteonecrosis. Exp. Mol. Med. 51, 23 (2019).
pmcid: 6391470
Wang, T., Wang, W. & Yin, Z. S. Treatment of osteonecrosis of the femoral head with thorough debridement, bone grafting and bone-marrow mononuclear cells implantation. Eur. J. Orthop. Surg. Traumatol. 24, 197–202 (2014).
pubmed: 23412306 doi: 10.1007/s00590-012-1161-2 pmcid: 23412306
Canas, J. A., Sastre, B., Rodrigo-Munoz, J. M. & Del Pozo, V. Exosomes: a new approach to asthma pathology. Clin. Chim. Acta 495, 139–147 (2019).
pubmed: 30978325 doi: 10.1016/j.cca.2019.04.055 pmcid: 30978325
Stefanius, K. et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. Elife 8, https://doi.org/10.7554/eLife.40226 (2019).
Elahi, F. M., Farwell, D. G., Nolta, J. A. & Anderson, J. D. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells https://doi.org/10.1002/stem.3061 (2019).
doi: 10.1002/stem.3061 pubmed: 31381842 pmcid: 7004029
Genschmer, K. R. et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell 176, e115 (2019).
doi: 10.1016/j.cell.2018.12.002
Li, N. et al. Exosome-transmitted miR-25 induced by H. pylori promotes vascular endothelial cell injury by targeting KLF2. Front. Cell Infect. Microbiol 9, 366 (2019).
pubmed: 31750260 pmcid: 6842922 doi: 10.3389/fcimb.2019.00366
Moya-Angeler, J., Gianakos, A. L., Villa, J. C., Ni, A. & Lane, J. M. Current concepts on osteonecrosis of the femoral head. World J. Orthopedics 6, 590–601 (2015).
doi: 10.5312/wjo.v6.i8.590
Huang, L. et al. High levels of GSK-3beta signalling reduce osteogenic differentiation of stem cells in osteonecrosis of femoral head. J. Biochem. 163, 243–251 (2018).
pubmed: 29136173 doi: 10.1093/jb/mvx076 pmcid: 29136173
Hessvik, N. P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 75, 193–208 (2018).
pubmed: 28733901 doi: 10.1007/s00018-017-2595-9 pmcid: 28733901
Hu, N., Feng, C., Jiang, Y., Miao, Q. & Liu, H. Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway. Int J. Mol. Sci. 16, 10491–10506 (2015).
pubmed: 25961955 pmcid: 4463658 doi: 10.3390/ijms160510491
Wang, T. et al. Role of mesenchymal stem cells on differentiation in steroid-induced avascular necrosis of the femoral head. Exp. Ther. Med. 13, 669–675 (2017).
pubmed: 28352349 doi: 10.3892/etm.2016.3991 pmcid: 28352349
Song, M. et al. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 35, 479–490 (2014).
pubmed: 25145543 doi: 10.1002/bem.21867 pmcid: 25145543
Glynn, E. R., Londono, A. S., Zinn, S. A., Hoagland, T. A. & Govoni, K. E. Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts. J. Anim. Sci. Biotechnol. 4, 40 (2013).
pubmed: 24169030 pmcid: 3874597 doi: 10.1186/2049-1891-4-40
Awan, B. et al. FGF2 induces migration of human bone marrow stromal cells by increasing core fucosylations on N-glycans of integrins. Stem Cell Rep. 11, 325–333 (2018).
doi: 10.1016/j.stemcr.2018.06.007
Natoli, R. M. et al. Alcohol exposure decreases osteopontin expression during fracture healing and osteopontin-mediated mesenchymal stem cell migration in vitro. J. Orthop. Surg. Res. 13, 101 (2018).
pubmed: 29699560 pmcid: 5921778 doi: 10.1186/s13018-018-0800-7
Shen, G. Y. et al. Plastrum testudinis extracts promote BMSC proliferation and osteogenic differentiation by regulating Let-7f-5p and the TNFR2/PI3K/AKT signaling pathway. Cell Physiol. Biochem. 47, 2307–2318 (2018).
pubmed: 29975930 doi: 10.1159/000491541 pmcid: 29975930
Zhuang, L., Wang, L., Xu, D. & Wang, Z. Anteromedial femoral neck plate with cannulated screws for the treatment of irreducible displaced femoral neck fracture in young patients: a preliminary study. Eur. J. Trauma Emerg. Surg. 45, 995–1002 (2019).
pubmed: 29909465 doi: 10.1007/s00068-018-0972-1 pmcid: 29909465
Yang, F. et al. Vascularized pedicle iliac bone grafts as a hip-preserving surgery for femur head necrosis: a systematic review. J. Orthop. Surg. Res. 14, 270 (2019).
pubmed: 31455329 pmcid: 6710879 doi: 10.1186/s13018-019-1262-2
Lu, Z., Chen, Y., Dunstan, C., Roohani-Esfahani, S. & Zreiqat, H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng. Part A 23, 1212–1220 (2017).
pubmed: 28346798 doi: 10.1089/ten.tea.2016.0548 pmcid: 28346798
Yin, Y. et al. Upregulating microRNA-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate osteonecrosis of the femoral head. Nanoscale Res. Lett. 14, 383 (2019).
pubmed: 31853663 pmcid: 6920280 doi: 10.1186/s11671-019-3221-6
Wu, R. W. et al. S100 calcium binding protein A9 represses angiogenic activity and aggravates osteonecrosis of the femoral head. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20225786 (2019).
Yu, H. et al. Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J. Cell Mol. Med. 23, 7320–7330 (2019).
pubmed: 31507078 pmcid: 6815836 doi: 10.1111/jcmm.14589
Cui, L. et al. Multicentric epidemiologic study on six thousand three hundred and ninety five cases of femoral head osteonecrosis in China. Int. Orthop. 40, 267–276 (2016).
pubmed: 26660727 doi: 10.1007/s00264-015-3061-7 pmcid: 26660727
Xie, Y. et al. Involvement of serum-derived exosomes of elderly patients with bone loss in failure of bone remodeling via alteration of exosomal bone-related proteins. Aging Cell 17, e12758 (2018).
pubmed: 29603567 pmcid: 5946082 doi: 10.1111/acel.12758
Li, H. et al. Exosomes secreted from mutant-HIF-1alpha-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biol. Int. 41, 1379–1390 (2017).
pubmed: 28877384 doi: 10.1002/cbin.10869 pmcid: 28877384
Guo, S. C. et al. Exosomes from human synovial-derived mesenchymal stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head in the rat. Int. J. Biol. Sci. 12, 1262–1272 (2016).
pubmed: 27766040 pmcid: 5069447 doi: 10.7150/ijbs.16150
Gao, M. et al. Exosomes-the enigmatic regulators of bone homeostasis. Bone Res. 6, 36 (2018).
pubmed: 30534458 pmcid: 6286319 doi: 10.1038/s41413-018-0039-2
Xu, M. & Peng, D. Mesenchymal stem cells cultured on tantalum used in early-stage avascular necrosis of the femoral head. Med. Hypotheses 76, 199–200 (2011).
pubmed: 20970260 doi: 10.1016/j.mehy.2010.09.028
Fahmy-Garcia, S. et al. Follistatin effects in migration, vascularization, and osteogenesis in vitro and bone repair in vivo. Front. Bioeng. Biotechnol. 7, 38 (2019).
pubmed: 30881954 pmcid: 6405513 doi: 10.3389/fbioe.2019.00038
Li, X. et al. MiR-9-5p promotes MSC migration by activating beta-catenin signaling pathway. Am. J. Physiol. Cell Physiol. 313, C80–C93 (2017).
pubmed: 28424168 doi: 10.1152/ajpcell.00232.2016
Bohm, A. M. et al. Activation of skeletal stem and progenitor cells for bone regeneration is driven by PDGFRbeta signaling. Dev. Cell 51, 236–254 e212 (2019).
pubmed: 31543445 doi: 10.1016/j.devcel.2019.08.013 pmcid: 31543445
Qiu, P. et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials 227, 119552 (2020).
pubmed: 31670079 doi: 10.1016/j.biomaterials.2019.119552 pmcid: 31670079
Olivares-Navarrete, R. et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc. Natl Acad. Sci. USA 105, 15767–15772 (2008).
pubmed: 18843104 doi: 10.1073/pnas.0805420105 pmcid: 18843104
Moon, Y. J. et al. Osterix regulates corticalization for longitudinal bone growth via integrin beta3 expression. Exp. Mol. Med. 50, 80 (2018).
Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).
pubmed: 23564910 doi: 10.1182/blood-2012-09-457929 pmcid: 23564910
Wang, X. et al. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials 230, 119571 (2020).
pubmed: 31753474 doi: 10.1016/j.biomaterials.2019.119571 pmcid: 31753474
Luo, K. et al. Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology. Acta Biomater. 85, 106–116 (2019).
pubmed: 30557698 doi: 10.1016/j.actbio.2018.12.018 pmcid: 30557698
Zhang, J. et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res. Ther. 7, 136 (2016).
pubmed: 27650895 pmcid: 5028974 doi: 10.1186/s13287-016-0391-3
Li, H. et al. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 22, 1935–1945 (2015).
pubmed: 26206089 pmcid: 4816120 doi: 10.1038/cdd.2015.99
Thiagarajan, L., Abu-Awwad, H. A. M. & Dixon, J. E. Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Transl. Med. 6, 2146–2159 (2017).
pubmed: 29090533 pmcid: 5702512 doi: 10.1002/sctm.17-0137
Jeppesen, D. K. et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 3, 25011 (2014).
pubmed: 25396408 doi: 10.3402/jev.v3.25011 pmcid: 25396408
Zarovni, N. et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87, 46–58 (2015).
pubmed: 26044649 doi: 10.1016/j.ymeth.2015.05.028 pmcid: 26044649
Vella, L. J. et al. A rigorous method to enrich for exosomes from brain tissue. J. Extracell. Vesicles 6, 1348885 (2017).
pubmed: 28804598 pmcid: 5533148 doi: 10.1080/20013078.2017.1348885
Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).
pubmed: 28255367 pmcid: 5327650 doi: 10.7150/thno.18133
Petho, A., Chen, Y. & George, A. Exosomes in extracellular matrix bone biology. Curr. Osteoporos. Rep. 16, 58–64 (2018).
pubmed: 29372401 pmcid: 5812795 doi: 10.1007/s11914-018-0419-y
Ramirez, M. I. et al. Technical challenges of working with extracellular vesicles. Nanoscale 10, 881–906 (2018).
pubmed: 29265147 doi: 10.1039/C7NR08360B pmcid: 29265147
Zhang, P. et al. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res. Bull. 142, 224–232 (2018).
pubmed: 30077728 doi: 10.1016/j.brainresbull.2018.07.015 pmcid: 30077728
Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).
pubmed: 30252093 doi: 10.1093/nar/gky869 pmcid: 30252093

Auteurs

Weiwen Zhu (W)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

MinKang Guo (M)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Wu Yang (W)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Min Tang (M)

Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.

Tingmei Chen (T)

Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.

Delu Gan (D)

Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.

Dian Zhang (D)

Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.

Xiaojuan Ding (X)

Department of Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Anping Zhao (A)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Pei Zhao (P)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Wenlong Yan (W)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Jian Zhang (J)

Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. zhangjian@hospital.cqmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH