Systemic modified messenger RNA for replacement therapy in alpha 1-antitrypsin deficiency.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 04 2020
Historique:
received: 22 11 2019
accepted: 09 04 2020
entrez: 29 4 2020
pubmed: 29 4 2020
medline: 15 12 2020
Statut: epublish

Résumé

Alpha 1-antitrypsin (AAT) deficiency arises from an inherited mutation in the SERPINA1 gene. The disease causes damage in the liver where the majority of the AAT protein is produced. Lack of functioning circulating AAT protein also causes uninhibited elastolytic activity in the lungs leading to AAT deficiency-related emphysema. The only therapy apart from liver transplantation is augmentation with human AAT protein pooled from sera, which is only reserved for patients with advanced lung disease caused by severe AAT deficiency. We tested modified mRNA encoding human AAT in primary human hepatocytes in culture, including hepatocytes from AAT deficient patients. Both expression and functional activity were investigated. Secreted AAT protein increased from 1,14 to 3,43 µg/ml in media from primary human hepatocytes following mRNA treatment as investigated by ELISA and western blot. The translated protein showed activity and protease inhibitory function as measured by elastase activity assay. Also, mRNA formulation in lipid nanoparticles was assessed for systemic delivery in both wild type mice and the NSG-PiZ transgenic mouse model of AAT deficiency. Systemic intravenous delivery of modified mRNA led to hepatic uptake and translation into a functioning protein in mice. These data support the use of systemic mRNA therapy as a potential treatment for AAT deficiency.

Identifiants

pubmed: 32341402
doi: 10.1038/s41598-020-64017-0
pii: 10.1038/s41598-020-64017-0
pmc: PMC7184591
doi:

Substances chimiques

RNA, Messenger 0
alpha 1-Antitrypsin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7052

Références

Laurell, C.-B. B. & Eriksson, S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. 1963. COPD 10(Suppl 1), 3–8, https://doi.org/10.3109/15412555.2013.771956 (2013).
doi: 10.3109/15412555.2013.771956 pubmed: 23527532
Greene, C. M. et al. α1-Antitrypsin deficiency. Nature reviews. Disease primers 2, 16051, https://doi.org/10.1038/nrdp.2016.51 (2016).
doi: 10.1038/nrdp.2016.51 pubmed: 27465791
Fagerhol, M. K. & Laurell, C. B. The Pi system-inherited variants of serum alpha 1-antitrypsin. Progress in medical genetics 7 (1970).
Ehlers, M. R. Immune-modulating effects of alpha-1 antitrypsin. Biological chemistry 395, 1187–1193, https://doi.org/10.1515/hsz-2014-0161 (2014).
doi: 10.1515/hsz-2014-0161 pubmed: 24854541 pmcid: 4237306
Lewis, E. C. Expanding the Clinical Indications for alpha(1)-Antitrypsin Therapy. Mol Med 18, 957–970, https://doi.org/10.2119/molmed.2011.00196 (2012).
doi: 10.2119/molmed.2011.00196 pubmed: 22634722 pmcid: 3459478
Koulmanda, M. et al. Alpha 1-antitrypsin reduces inflammation and enhances mouse pancreatic islet transplant survival. Proc Natl Acad Sci U S A 109, 15443–15448, https://doi.org/10.1073/pnas.1018366109 (2012).
doi: 10.1073/pnas.1018366109 pubmed: 22949661 pmcid: 3458386
Stoller, J. K. & Aboussouan, L. S. Alpha1-antitrypsin deficiency. Lancet 365, 2225–2236, https://doi.org/10.1016/S0140-6736(05)66781-5 (2005).
doi: 10.1016/S0140-6736(05)66781-5 pubmed: 15978931
Teckman, J. H. & Mangalat, N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert review of gastroenterology & hepatology 9, 261–268, https://doi.org/10.1586/17474124.2014.943187 (2015).
doi: 10.1586/17474124.2014.943187
Berg, N. O. & Eriksson, S. Liver disease in adults with alpha-1 -antitrypsin deficiency. The New England journal of medicine 287, 1264–1267, https://doi.org/10.1056/NEJM197212212872502 (1972).
doi: 10.1056/NEJM197212212872502 pubmed: 4117996
Kueppers, F. The role of augmentation therapy in alpha-1 antitrypsin deficiency. Current medical research and opinion 27, 579–588, https://doi.org/10.1185/03007995.2010.548750 (2011).
doi: 10.1185/03007995.2010.548750 pubmed: 21226542
Chapman, K. R., Stockley, R. A., Dawkins, C., Wilkes, M. M. & Navickis, R. J. Augmentation therapy for alpha1 antitrypsin deficiency: a meta-analysis. COPD 6, 177–184 (2009).
doi: 10.1080/15412550902905961
Gøtzsche, P. C. & Johansen, H. Intravenous alpha-1 antitrypsin augmentation therapy for treating patients with alpha‐1 antitrypsin deficiency and lung disease. The Cochrane Library, https://doi.org/10.1002/14651858.CD007851 (2010).
Loring, H. S. & Flotte, T. R. Current status of gene therapy for α-1 antitrypsin deficiency. Expert opinion on biological therapy 15, 329–336, https://doi.org/10.1517/14712598.2015.978854 (2015).
doi: 10.1517/14712598.2015.978854 pubmed: 25363251
Piitulainen, E., Bernspang, E., Bjorkman, S. & Berntorp, E. Tailored pharmacokinetic dosing allows self-administration and reduces the cost of IV augmentation therapy with human alpha(1)-antitrypsin. Eur J Clin Pharmacol 59, 151–156, https://doi.org/10.1007/s00228-003-0589-z (2003).
doi: 10.1007/s00228-003-0589-z pubmed: 12728289
DeRosa, F. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 23, 699–707, https://doi.org/10.1038/gt.2016.46 (2016).
doi: 10.1038/gt.2016.46 pubmed: 27356951 pmcid: 5059749
Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proceedings of the National Academy of Sciences of the United States of America, https://doi.org/10.1073/pnas.1619653114 (2017).
Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes & development 5, 2108–2116 (1991).
doi: 10.1101/gad.5.11.2108
Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular therapy: the journal of the American Society of Gene Therapy 16, 1833–1840, https://doi.org/10.1038/mt.2008.200 (2008).
doi: 10.1038/mt.2008.200
Yin, H. et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 15, 541–555, https://doi.org/10.1038/nrg3763 (2014).
doi: 10.1038/nrg3763 pubmed: 25022906
Baum, C., Kustikova, O., Modlich, U., Li, Z. & Fehse, B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17, 253–263, https://doi.org/10.1089/hum.2006.17.253 (2006).
doi: 10.1089/hum.2006.17.253 pubmed: 16544975
Bessis, N., GarciaCozar, F. J. & Boissier, M. C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1), S10–17, https://doi.org/10.1038/sj.gt.3302364 (2004).
doi: 10.1038/sj.gt.3302364 pubmed: 15454952
An, D. et al. Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Reports 21, 3548–3558, https://doi.org/10.1016/j.celrep.2017.11.081 (2017).
doi: 10.1016/j.celrep.2017.11.081 pubmed: 29262333
Stockley, R. A., Miravitlles, M., Vogelmeier, C. & Alpha Augmentation therapy for alpha-1 antitrypsin deficiency: towards a personalised approach. Orphanet journal of rare diseases 8, 149, https://doi.org/10.1186/1750-1172-8-149 (2013).
doi: 10.1186/1750-1172-8-149 pubmed: 24063809 pmcid: 3852071
Stoller, J. K. & Aboussouan, L. S. A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 185, 246–259, https://doi.org/10.1164/rccm.201108-1428CI (2012).
doi: 10.1164/rccm.201108-1428CI pubmed: 21960536
Jiang, L. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat Med 24, 1899–1909, https://doi.org/10.1038/s41591-018-0199-z (2018).
doi: 10.1038/s41591-018-0199-z pubmed: 30297912
Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci U S A, https://doi.org/10.1073/pnas.1906182116 (2019).
Kumar, V. et al. Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy. Mol Ther Nucleic Acids 3, e210, https://doi.org/10.1038/mtna.2014.61 (2014).
doi: 10.1038/mtna.2014.61 pubmed: 25405467 pmcid: 4459547
Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther 21, 1570–1578, https://doi.org/10.1038/mt.2013.124 (2013).
doi: 10.1038/mt.2013.124 pubmed: 23799535 pmcid: 3734658
Connolly, B., Isaacs, C., Cheng, L., Asrani, K. H. & Subramanian, R. R. SERPINA1 mRNA as a Treatment for Alpha-1 Antitrypsin Deficiency. Journal of Nucleic Acids 2018, https://doi.org/10.1155/2018/8247935 (2018).
Michel, T. et al. In Vitro Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency. Nucleic Acid Therapeutics 25, 235–244, https://doi.org/10.1089/nat.2015.0537 (2015).
doi: 10.1089/nat.2015.0537 pubmed: 26125662
Karadagi, A. et al. Exogenous alpha 1-antitrypsin down-regulates SERPINA1 expression. PloS one 12, https://doi.org/10.1371/journal.pone.0177279 (2017).
Carey, E. J., Iyer, V. N., Nelson, D. R., Nguyen, J. H. & Krowka, M. J. Outcomes for recipients of liver transplantation for alpha-1-antitrypsin deficiency-related cirrhosis. Liver Transpl 19, 1370–1376, https://doi.org/10.1002/lt.23744 (2013).
doi: 10.1002/lt.23744 pubmed: 24019185
Baligar, P. et al. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human alpha1-antitrypsin. Hepatology 65, 1319–1335, https://doi.org/10.1002/hep.29027 (2017).
doi: 10.1002/hep.29027 pubmed: 28056498
Jorns, C. et al. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 272, 201–223, https://doi.org/10.1111/j.1365-2796.2012.02574.x (2012).
doi: 10.1111/j.1365-2796.2012.02574.x pubmed: 22789058
Gramignoli, R. et al. Development and application of purified tissue dissociation enzyme mixtures for human hepatocyte isolation. Cell Transplant 21, 1245–1260, https://doi.org/10.3727/096368911X600939 (2012).
doi: 10.3727/096368911X600939 pubmed: 22080793
Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol 22, 346–353, https://doi.org/10.1016/j.tibtech.2004.04.006 (2004).
doi: 10.1016/j.tibtech.2004.04.006 pubmed: 15245907
Sabnis, S. et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Molecular Therapy 26, 1509–1519, https://doi.org/10.1016/j.ymthe.2018.03.010 (2018).
doi: 10.1016/j.ymthe.2018.03.010 pubmed: 29653760 pmcid: 5986714
Ganini, D. et al. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells. Redox biology 12, 462–468, https://doi.org/10.1016/j.redox.2017.03.002 (2017).
doi: 10.1016/j.redox.2017.03.002 pubmed: 28334681 pmcid: 5362137
Ansari, A. M., Ahmed, A. K., Matsangos, A. E. & and …, L.-F. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and … (2016).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675, https://doi.org/10.1038/nmeth.2089 (2012).
doi: 10.1038/nmeth.2089 pubmed: 22930834 pmcid: 5554542
Fuhrich, D. G., Lessey, B. A. & Savaris, R. F. Comparison of HSCORE assessment of endometrial beta3 integrin subunit expression with digital HSCORE using computerized image analysis (ImageJ). Anal Quant Cytopathol Histpathol 35, 210–216 (2013).
pubmed: 24341124 pmcid: 4090774

Auteurs

Ahmad Karadagi (A)

Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
PO Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.

Alex G Cavedon (AG)

Moderna Inc, Cambridge, MA, 02139, USA.

Helen Zemack (H)

Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.

Greg Nowak (G)

PO Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.

Marianne E Eybye (ME)

Moderna Inc, Cambridge, MA, 02139, USA.

Xuling Zhu (X)

Moderna Inc, Cambridge, MA, 02139, USA.

Eleonora Guadagnin (E)

Moderna Inc, Cambridge, MA, 02139, USA.

Rebecca A White (RA)

Moderna Inc, Cambridge, MA, 02139, USA.

Lisa M Rice (LM)

Moderna Inc, Cambridge, MA, 02139, USA.

Andrea L Frassetto (AL)

Moderna Inc, Cambridge, MA, 02139, USA.

Stephen Strom (S)

Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.

Carl Jorns (C)

PO Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.

Paolo G V Martini (PGV)

Moderna Inc, Cambridge, MA, 02139, USA.

Ewa Ellis (E)

Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. ewa.ellis@ki.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH