Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma.
Hub genes
Invasiveness
Pituitary adenoma
Weighted gene co-expression network analysis
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
12
02
2020
accepted:
13
04
2020
pubmed:
29
4
2020
medline:
22
6
2021
entrez:
29
4
2020
Statut:
ppublish
Résumé
In pituitary adenoma (PA), invasiveness is the main cause of recurrence and poor prognosis. Thus, identifying specific biomarkers for diagnosis and effective treatment of invasive PAs is of great clinical significance. In this study, from the Gene Expression Omnibus database, we obtained and combined several microarrays of PA by the "sva" R package. Weighted gene co-expression network analysis was performed to construct a scale-free topology model and analyze the relationships between the modules and clinical traits. Our analysis results indicated that three key modules (dark turquoise, saddle brown, and steel blue) were associated with the invasiveness of PA. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Ontology analysis were performed for the functional annotation of the key modules. In addition, the hub genes in the three modules were identified and screened by differential expression analysis between normal samples and PA samples. Three upregulated differentially expressed genes (DGAT2, PIGZ, and DHRS2) were identified. The Fisher's exact test and receiver operating characteristic curve were used to validate the capability of these genes to distinguish invasive traits, and transcription factor interaction networks were used to further explore the underlying mechanisms of the three genes. Moreover, a lower expression level of DGAT2 in invasive PA tissue than in noninvasive PA tissue was validated by quantitative reverse transcription-polymerase chain reaction. In general, this study contributes to potential molecular biomarkers of invasive PAs and provides a broader perspective for diagnosis and new therapeutic targets for the invasive PAs.
Identifiants
pubmed: 32342269
doi: 10.1007/s12020-020-02316-2
pii: 10.1007/s12020-020-02316-2
doi:
Substances chimiques
Carbonyl Reductase (NADPH)
EC 1.1.1.184
DHRS2 protein, human
EC 1.1.1.184
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
377-389Subventions
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20192BAB205042
Pays : International
Organisme : Health and Family Planning Commission of Jiangxi Province
ID : 20195109
Pays : International
Références
J.S. Barnholtz-Sloan, Q.T. Ostrom, D. Cote, Epidemiology of brain tumors. Neurol. Clin. 36(3), 395–419 (2018). https://doi.org/10.1016/j.ncl.2018.04.001
doi: 10.1016/j.ncl.2018.04.001
pubmed: 30072062
E.D. Aflorei, M. Korbonits, Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol 117(3), 379–394 (2014). https://doi.org/10.1007/s11060-013-1354-5
doi: 10.1007/s11060-013-1354-5
pubmed: 24481996
B.W. Scheithauer, K.T. Kovacs, E.R. Laws Jr., R.V. Randall, Pathology of invasive pituitary tumors with special reference to functional classification. J. Neurosurg. 65(6), 733–744 (1986). https://doi.org/10.3171/jns.1986.65.6.0733
doi: 10.3171/jns.1986.65.6.0733
pubmed: 3095506
K. Thapar, K. Kovacs, B.W. Scheithauer, L. Stefaneanu, E. Horvath, P.J. Pernicone, D. Murray, E.R. Laws Jr., Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(1), 99–106 (1996). https://doi.org/10.1097/00006123-199601000-00024
doi: 10.1097/00006123-199601000-00024
pubmed: 8747957
B.P. Meij, M.B. Lopes, D.B. Ellegala, T.D. Alden, E.R. Laws Jr, The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J. Neurosurg. 96(2), 195–208 (2002). https://doi.org/10.3171/jns.2002.96.2.0195
doi: 10.3171/jns.2002.96.2.0195
pubmed: 11838791
G.A. Kaltsas, P. Nomikos, G. Kontogeorgos, M. Buchfelder, A.B. Grossman, Clinical review: diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90(5), 3089–3099 (2005). https://doi.org/10.1210/jc.2004-2231
doi: 10.1210/jc.2004-2231
pubmed: 15741248
M. Buchfelder, Management of aggressive pituitary adenomas: current treatment strategies. Pituitary 12(3), 256–260 (2009). https://doi.org/10.1007/s11102-008-0153-z
doi: 10.1007/s11102-008-0153-z
pubmed: 19003540
A.I. McCormack, J.A. Wass, A.B. Grossman, Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur. J. Clin. Invest 41(10), 1133–1148 (2011). https://doi.org/10.1111/j.1365-2362.2011.02520.x
doi: 10.1111/j.1365-2362.2011.02520.x
pubmed: 21496012
G. Raverot, F. Castinetti, E. Jouanneau, I. Morange, D. Figarella-Branger, H. Dufour, J. Trouillas, T. Brue, Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin. Endocrinol. 76(6), 769–775 (2012). https://doi.org/10.1111/j.1365-2265.2012.04381.x
doi: 10.1111/j.1365-2265.2012.04381.x
M.B.S. Lopes, The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 134(4), 521–535 (2017). https://doi.org/10.1007/s00401-017-1769-8
doi: 10.1007/s00401-017-1769-8
pubmed: 28821944
C. Dai, X. Liu, W. Ma, R. Wang, The treatment of refractory pituitary adenomas. Front. Endocrinol. 10, 334 (2019). https://doi.org/10.3389/fendo.2019.00334
doi: 10.3389/fendo.2019.00334
Q. Yang, X. Li, Molecular network basis of invasive pituitary adenoma: a review. Front. Endocrinol. 10, 7 (2019). https://doi.org/10.3389/fendo.2019.00007
doi: 10.3389/fendo.2019.00007
S. Chiloiro, F. Doglietto, B. Trapasso, D. Iacovazzo, A. Giampietro, F. Di Nardo, C. de Waure, L. Lauriola, A. Mangiola, C. Anile, G. Maira, L. De Marinis, A. Bianchi, Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2), 143–150 (2015). https://doi.org/10.1159/000375448
doi: 10.1159/000375448
pubmed: 25633744
C.P. Miermeister, S. Petersenn, M. Buchfelder, R. Fahlbusch, D.K. Ludecke, A. Holsken, M. Bergmann, U.J. Knappe, V.H. Hans, J. Flitsch, W. Saeger, R. Buslei, Erratum: histological criteria for atypical pituitary adenomas–data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol. Commun. 4, 21 (2016). https://doi.org/10.1186/s40478-016-0290-y
doi: 10.1186/s40478-016-0290-y
pubmed: 26984397
pmcid: 4794839
A. Di Ieva, F. Rotondo, L.V. Syro, M.D. Cusimano, K. Kovacs, Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat. Rev. Endocrinol. 10(7), 423–435 (2014). https://doi.org/10.1038/nrendo.2014.64
doi: 10.1038/nrendo.2014.64
pubmed: 24821329
Y. Yang, L. Han, Y. Yuan, J. Li, N. Hei, H. Liang, Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 5, 3231 (2014). https://doi.org/10.1038/ncomms4231
doi: 10.1038/ncomms4231
pubmed: 24488081
pmcid: 3951205
G. Fiscon, F. Conte, V. Licursi, S. Nasi, P. Paci, Computational identification of specific genes for glioblastoma stem-like cells identity. Sci. Rep. 8(1), 7769 (2018). https://doi.org/10.1038/s41598-018-26081-5
doi: 10.1038/s41598-018-26081-5
pubmed: 29773872
pmcid: 5958093
R. Falcone, F. Conte, G. Fiscon, V. Pecce, M. Sponziello, C. Durante, L. Farina, S. Filetti, P. Paci, A. Verrienti, BRAF(V600E)-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine 64(2), 406–413 (2019). https://doi.org/10.1007/s12020-019-01890-4
doi: 10.1007/s12020-019-01890-4
pubmed: 30850937
S. van Dam, U. Vosa, A. van der Graaf, L. Franke, J.P. de Magalhaes, Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 19(4), 575–592 (2018). https://doi.org/10.1093/bib/bbw139
doi: 10.1093/bib/bbw139
pubmed: 28077403
P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559
doi: 10.1186/1471-2105-9-559
T. Zhai, D. Muhanhali, X. Jia, Z. Wu, Z. Cai, Y. Ling, Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer. Endocrine 66(3), 573–584 (2019). https://doi.org/10.1007/s12020-019-02021-9
doi: 10.1007/s12020-019-02021-9
pubmed: 31332712
N. Li, X. Zhan, Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 10(3), 273–290 (2019). https://doi.org/10.1007/s13167-019-00175-0
doi: 10.1007/s13167-019-00175-0
pubmed: 31462944
pmcid: 6695468
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303
doi: 10.1101/gr.1239303
pubmed: 403769
pmcid: 403769
E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4), 610–617 (1993). https://doi.org/10.1227/00006123-199310000-00008
doi: 10.1227/00006123-199310000-00008
pubmed: 8232800
O. Mete, S. Ezzat, S.L. Asa, Biomarkers of aggressive pituitary adenomas. J. Mol. Endocrinol. 49(2), R69–R78 (2012). https://doi.org/10.1530/JME-12-0113
doi: 10.1530/JME-12-0113
pubmed: 22822048
F. Conte, G. Fiscon, V. Licursi, D. Bizzarri, T. D’Anto, L. Farina, P. Paci, A paradigm shift in medicine: a comprehensive review of network-based approaches. Biochim. Biophys. Acta Gene Regul. Mech., 194416 (2019). https://doi.org/10.1016/j.bbagrm.2019.194416
A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). https://doi.org/10.1038/nrg2918
doi: 10.1038/nrg2918
pubmed: 21164525
pmcid: 3140052
B. Aydin, K.Y. Arga, Co-expression network analysis elucidated a core module in association with prognosis of non-functioning non-invasive human pituitary adenoma. Front. Endocrinol. 10, 361 (2019). https://doi.org/10.3389/fendo.2019.00361
doi: 10.3389/fendo.2019.00361
W. Xing, Z. Qi, C. Huang, N. Zhang, W. Zhang, Y. Li, M. Qiu, Q. Fang, G. Hui, Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol. Open 8(1), (2019). https://doi.org/10.1242/bio.037127
H. Joshi, B. Vastrad, C. Vastrad, Identification of important invasion-related genes in non-functional pituitary adenomas. J. Mol. Neurosci. 68(4), 565–589 (2019). https://doi.org/10.1007/s12031-019-01318-8
doi: 10.1007/s12031-019-01318-8
pubmed: 30982163
S.J. Thomas, J.A. Snowden, M.P. Zeidler, S.J. Danson, The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer 113(3), 365–371 (2015). https://doi.org/10.1038/bjc.2015.233
doi: 10.1038/bjc.2015.233
pubmed: 26151455
pmcid: 4522639
J.J. O’Shea, D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, A. Laurence, The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015). https://doi.org/10.1146/annurev-med-051113-024537
doi: 10.1146/annurev-med-051113-024537
pubmed: 25587654
pmcid: 5634336
Y. Asari, K. Kageyama, Y. Nakada, M. Tasso, S. Takayasu, K. Niioka, N. Ishigame, M. Daimon, Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells. Onco Targets Ther. 10, 4329–4338 (2017). https://doi.org/10.2147/OTT.S141345
doi: 10.2147/OTT.S141345
pubmed: 28919782
pmcid: 5590765
R. van der Pas, J.H. van Esch, C. de Bruin, A.H. Danser, A.M. Pereira, P.M. Zelissen, R. Netea-Maier, D.M. Sprij-Mooij, I.M. van den Berg-Garrelds, R.H. van Schaik, S.W. Lamberts, A.H. van den Meiracker, L.J. Hofland, R.A. Feelders, Cushing’s disease and hypertension: in vivo and in vitro study of the role of the renin-angiotensin-aldosterone system and effects of medical therapy. Eur. J. Endocrinol. 170(2), 181–191 (2014). https://doi.org/10.1530/EJE-13-0477
doi: 10.1530/EJE-13-0477
pubmed: 24165019
L. Faggi, A. Giustina, G. Tulipano, Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol. Cell Endocrinol. 470, 60–74 (2018). https://doi.org/10.1016/j.mce.2017.09.030
doi: 10.1016/j.mce.2017.09.030
pubmed: 28962892
A.B. Grossman, The molecular biology of pituitary tumors: a personal perspective. Pituitary 12(3), 265–270 (2009). https://doi.org/10.1007/s11102-008-0158-7
doi: 10.1007/s11102-008-0158-7
pubmed: 19058014
Y. Jin Kim, C. Hyun Kim, J. Hwan Cheong, J. Min Kim, Relationship between expression of vascular endothelial growth factor and intratumoral hemorrhage in human pituitary adenomas. Tumori 97(5), 639–646 (2011). https://doi.org/10.1700/989.10725
doi: 10.1700/989.10725
pubmed: 22158497
R. Sanchez-Ortiga, L. Sanchez-Tejada, O. Moreno-Perez, P. Riesgo, M. Niveiro, A.M. Pico Alfonso, Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 16(3), 370–377 (2013). https://doi.org/10.1007/s11102-012-0434-4
doi: 10.1007/s11102-012-0434-4
pubmed: 22990332
C. Zhao, M. Zhang, W. Liu, C. Wang, Q. Zhang, W. Li, Beta-catenin knockdown inhibits pituitary adenoma cell proliferation and invasion via interfering with AKT and gelatinases expression. Int. J. Oncol. 46(4), 1643–1650 (2015). https://doi.org/10.3892/ijo.2015.2862
doi: 10.3892/ijo.2015.2862
pubmed: 25646597
X. Zhan, D.M. Desiderio, Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med. Genomics 3, 13 (2010). https://doi.org/10.1186/1755-8794-3-13
doi: 10.1186/1755-8794-3-13
pubmed: 20426862
pmcid: 2884164
C. Onofri, M. Theodoropoulou, M. Losa, E. Uhl, M. Lange, E. Arzt, G.K. Stalla, U. Renner, Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J. Endocrinol. 191(1), 249–261 (2006). https://doi.org/10.1677/joe.1.06992
doi: 10.1677/joe.1.06992
pubmed: 17065408
Y. Li, T. Li, Y. Jin, J. Shen, Dgat2 reduces hepatocellular carcinoma malignancy via downregulation of cell cycle-related gene expression. Biomed. Pharmacother. 115, 108950 (2019). https://doi.org/10.1016/j.biopha.2019.108950
doi: 10.1016/j.biopha.2019.108950
pubmed: 31078041
R. Nurminen, T. Rantapero, S.C. Wong, D. Fischer, R. Lehtonen, T.L. Tammela, M. Nykter, T. Visakorpi, T. Wahlfors, J. Schleutker, Expressional profiling of prostate cancer risk SNPs at 11q13.5 identifies DGAT2 as a new target gene. Genes Chromosomes Cancer 55(8), 661–673 (2016). https://doi.org/10.1002/gcc.22368
doi: 10.1002/gcc.22368
pubmed: 27113481
Y. Han, Z. Wang, S. Sun, Z. Zhang, J. Liu, X. Jin, P. Wu, T. Ji, W. Ding, B. Wang, Q. Gao, Decreased DHRS2 expression is associated with HDACi resistance and poor prognosis in ovarian cancer. Epigenetics 15(1–2), 122–133 (2020). https://doi.org/10.1080/15592294.2019.1656155
doi: 10.1080/15592294.2019.1656155
pubmed: 31423895
Y. Zhou, L. Wang, X. Ban, T. Zeng, Y. Zhu, M. Li, X.Y. Guan, Y. Li, DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 37(8), 1086–1094 (2018). https://doi.org/10.1038/onc.2017.383
doi: 10.1038/onc.2017.383
pubmed: 29106393
B.W. Taron, P.A. Colussi, J.M. Wiedman, P. Orlean, C.H. Taron, Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279(34), 36083–36092 (2004). https://doi.org/10.1074/jbc.M405081200
doi: 10.1074/jbc.M405081200
pubmed: 15208306
S.L. Asa, Practical pituitary pathology: what does the pathologist need to know? Arch. Pathol. Lab. Med. 132(8), 1231–1240 (2008). https://doi.org/10.1043/1543-2165(2008)132[1231:PPPWDT]2.0.CO;2
doi: 10.1043/1543-2165(2008)132[1231:PPPWDT]2.0.CO;2
pubmed: 18684022
O. Mete, S.L. Asa, Clinicopathological correlations in pituitary adenomas. Brain Pathol. 22(4), 443–453 (2012). https://doi.org/10.1111/j.1750-3639.2012.00599.x
doi: 10.1111/j.1750-3639.2012.00599.x
pubmed: 22697380
H. Nishioka, N. Inoshita, O. Mete, S.L. Asa, K. Hayashi, A. Takeshita, N. Fukuhara, M. Yamaguchi-Okada, Y. Takeuchi, S. Yamada, The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr. Pathol. 26(4), 349–355 (2015). https://doi.org/10.1007/s12022-015-9398-z
doi: 10.1007/s12022-015-9398-z
pubmed: 26481628
R.S. Viger, S.M. Guittot, M. Anttonen, D.B. Wilson, M. Heikinheimo, Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22(4), 781–798 (2008). https://doi.org/10.1210/me.2007-0513
doi: 10.1210/me.2007-0513
pubmed: 18174356
pmcid: 2276466
M. Pihlajoki, A. Farkkila, T. Soini, M. Heikinheimo, D.B. Wilson, GATA factors in endocrine neoplasia. Mol. Cell Endocrinol. 421, 2–17 (2016). https://doi.org/10.1016/j.mce.2015.05.027
doi: 10.1016/j.mce.2015.05.027
pubmed: 26027919
J. He, J.J. Yu, Q. Xu, L. Wang, J.Z. Zheng, L.Z. Liu, B.H. Jiang, Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 11(2), 373–384 (2015). https://doi.org/10.1080/15548627.2015.1009781
doi: 10.1080/15548627.2015.1009781
pubmed: 25650716
pmcid: 4502709
H.T. Liu, S. Liu, L. Liu, R.R. Ma, P. Gao, EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 78(20), 5877–5890 (2018). https://doi.org/10.1158/0008-5472.CAN-18-1011
doi: 10.1158/0008-5472.CAN-18-1011
pubmed: 30185552
pmcid: 6191331
L. Li, A.H. Ameri, S. Wang, K.H. Jansson, O.M. Casey, Q. Yang, M.L. Beshiri, L. Fang, R.G. Lake, S. Agarwal, A.N. Alilin, W. Xu, J. Yin, K. Kelly, EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 38(35), 6241–6255 (2019). https://doi.org/10.1038/s41388-019-0873-8
doi: 10.1038/s41388-019-0873-8
pubmed: 31312026
pmcid: 6715537
S.W. Sun, X.M. Fang, Y.F. Li, Q.B. Wang, Y.X. Li, Expression and clinical significance of EGR-1 and PTEN in the pituitary tumors of elderly patients. Oncol. Lett. 14(2), 2165–2169 (2017). https://doi.org/10.3892/ol.2017.6375
doi: 10.3892/ol.2017.6375
pubmed: 28789441
pmcid: 5530027
L. Xu, Y. Chen, M. Dutra-Clarke, A. Mayakonda, M. Hazawa, S.E. Savinoff, N. Doan, J.W. Said, W.H. Yong, A. Watkins, H. Yang, L.W. Ding, Y.Y. Jiang, J.W. Tyner, J. Ching, J.P. Kovalik, V. Madan, S.L. Chan, M. Muschen, J.J. Breunig, D.C. Lin, H.P. Koeffler, BCL6 promotes glioma and serves as a therapeutic target. Proc. Natl Acad. Sci. USA 114(15), 3981–3986 (2017). https://doi.org/10.1073/pnas.1609758114
doi: 10.1073/pnas.1609758114
pubmed: 28356518