Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma.


Journal

Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444

Informations de publication

Date de publication:
05 2020
Historique:
received: 12 02 2020
accepted: 13 04 2020
pubmed: 29 4 2020
medline: 22 6 2021
entrez: 29 4 2020
Statut: ppublish

Résumé

In pituitary adenoma (PA), invasiveness is the main cause of recurrence and poor prognosis. Thus, identifying specific biomarkers for diagnosis and effective treatment of invasive PAs is of great clinical significance. In this study, from the Gene Expression Omnibus database, we obtained and combined several microarrays of PA by the "sva" R package. Weighted gene co-expression network analysis was performed to construct a scale-free topology model and analyze the relationships between the modules and clinical traits. Our analysis results indicated that three key modules (dark turquoise, saddle brown, and steel blue) were associated with the invasiveness of PA. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Ontology analysis were performed for the functional annotation of the key modules. In addition, the hub genes in the three modules were identified and screened by differential expression analysis between normal samples and PA samples. Three upregulated differentially expressed genes (DGAT2, PIGZ, and DHRS2) were identified. The Fisher's exact test and receiver operating characteristic curve were used to validate the capability of these genes to distinguish invasive traits, and transcription factor interaction networks were used to further explore the underlying mechanisms of the three genes. Moreover, a lower expression level of DGAT2 in invasive PA tissue than in noninvasive PA tissue was validated by quantitative reverse transcription-polymerase chain reaction. In general, this study contributes to potential molecular biomarkers of invasive PAs and provides a broader perspective for diagnosis and new therapeutic targets for the invasive PAs.

Identifiants

pubmed: 32342269
doi: 10.1007/s12020-020-02316-2
pii: 10.1007/s12020-020-02316-2
doi:

Substances chimiques

Carbonyl Reductase (NADPH) EC 1.1.1.184
DHRS2 protein, human EC 1.1.1.184

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

377-389

Subventions

Organisme : Natural Science Foundation of Jiangxi Province
ID : 20192BAB205042
Pays : International
Organisme : Health and Family Planning Commission of Jiangxi Province
ID : 20195109
Pays : International

Références

J.S. Barnholtz-Sloan, Q.T. Ostrom, D. Cote, Epidemiology of brain tumors. Neurol. Clin. 36(3), 395–419 (2018). https://doi.org/10.1016/j.ncl.2018.04.001
doi: 10.1016/j.ncl.2018.04.001 pubmed: 30072062
E.D. Aflorei, M. Korbonits, Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol 117(3), 379–394 (2014). https://doi.org/10.1007/s11060-013-1354-5
doi: 10.1007/s11060-013-1354-5 pubmed: 24481996
B.W. Scheithauer, K.T. Kovacs, E.R. Laws Jr., R.V. Randall, Pathology of invasive pituitary tumors with special reference to functional classification. J. Neurosurg. 65(6), 733–744 (1986). https://doi.org/10.3171/jns.1986.65.6.0733
doi: 10.3171/jns.1986.65.6.0733 pubmed: 3095506
K. Thapar, K. Kovacs, B.W. Scheithauer, L. Stefaneanu, E. Horvath, P.J. Pernicone, D. Murray, E.R. Laws Jr., Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(1), 99–106 (1996). https://doi.org/10.1097/00006123-199601000-00024
doi: 10.1097/00006123-199601000-00024 pubmed: 8747957
B.P. Meij, M.B. Lopes, D.B. Ellegala, T.D. Alden, E.R. Laws Jr, The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J. Neurosurg. 96(2), 195–208 (2002). https://doi.org/10.3171/jns.2002.96.2.0195
doi: 10.3171/jns.2002.96.2.0195 pubmed: 11838791
G.A. Kaltsas, P. Nomikos, G. Kontogeorgos, M. Buchfelder, A.B. Grossman, Clinical review: diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90(5), 3089–3099 (2005). https://doi.org/10.1210/jc.2004-2231
doi: 10.1210/jc.2004-2231 pubmed: 15741248
M. Buchfelder, Management of aggressive pituitary adenomas: current treatment strategies. Pituitary 12(3), 256–260 (2009). https://doi.org/10.1007/s11102-008-0153-z
doi: 10.1007/s11102-008-0153-z pubmed: 19003540
A.I. McCormack, J.A. Wass, A.B. Grossman, Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur. J. Clin. Invest 41(10), 1133–1148 (2011). https://doi.org/10.1111/j.1365-2362.2011.02520.x
doi: 10.1111/j.1365-2362.2011.02520.x pubmed: 21496012
G. Raverot, F. Castinetti, E. Jouanneau, I. Morange, D. Figarella-Branger, H. Dufour, J. Trouillas, T. Brue, Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin. Endocrinol. 76(6), 769–775 (2012). https://doi.org/10.1111/j.1365-2265.2012.04381.x
doi: 10.1111/j.1365-2265.2012.04381.x
M.B.S. Lopes, The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 134(4), 521–535 (2017). https://doi.org/10.1007/s00401-017-1769-8
doi: 10.1007/s00401-017-1769-8 pubmed: 28821944
C. Dai, X. Liu, W. Ma, R. Wang, The treatment of refractory pituitary adenomas. Front. Endocrinol. 10, 334 (2019). https://doi.org/10.3389/fendo.2019.00334
doi: 10.3389/fendo.2019.00334
Q. Yang, X. Li, Molecular network basis of invasive pituitary adenoma: a review. Front. Endocrinol. 10, 7 (2019). https://doi.org/10.3389/fendo.2019.00007
doi: 10.3389/fendo.2019.00007
S. Chiloiro, F. Doglietto, B. Trapasso, D. Iacovazzo, A. Giampietro, F. Di Nardo, C. de Waure, L. Lauriola, A. Mangiola, C. Anile, G. Maira, L. De Marinis, A. Bianchi, Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2), 143–150 (2015). https://doi.org/10.1159/000375448
doi: 10.1159/000375448 pubmed: 25633744
C.P. Miermeister, S. Petersenn, M. Buchfelder, R. Fahlbusch, D.K. Ludecke, A. Holsken, M. Bergmann, U.J. Knappe, V.H. Hans, J. Flitsch, W. Saeger, R. Buslei, Erratum: histological criteria for atypical pituitary adenomas–data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol. Commun. 4, 21 (2016). https://doi.org/10.1186/s40478-016-0290-y
doi: 10.1186/s40478-016-0290-y pubmed: 26984397 pmcid: 4794839
A. Di Ieva, F. Rotondo, L.V. Syro, M.D. Cusimano, K. Kovacs, Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat. Rev. Endocrinol. 10(7), 423–435 (2014). https://doi.org/10.1038/nrendo.2014.64
doi: 10.1038/nrendo.2014.64 pubmed: 24821329
Y. Yang, L. Han, Y. Yuan, J. Li, N. Hei, H. Liang, Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 5, 3231 (2014). https://doi.org/10.1038/ncomms4231
doi: 10.1038/ncomms4231 pubmed: 24488081 pmcid: 3951205
G. Fiscon, F. Conte, V. Licursi, S. Nasi, P. Paci, Computational identification of specific genes for glioblastoma stem-like cells identity. Sci. Rep. 8(1), 7769 (2018). https://doi.org/10.1038/s41598-018-26081-5
doi: 10.1038/s41598-018-26081-5 pubmed: 29773872 pmcid: 5958093
R. Falcone, F. Conte, G. Fiscon, V. Pecce, M. Sponziello, C. Durante, L. Farina, S. Filetti, P. Paci, A. Verrienti, BRAF(V600E)-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine 64(2), 406–413 (2019). https://doi.org/10.1007/s12020-019-01890-4
doi: 10.1007/s12020-019-01890-4 pubmed: 30850937
S. van Dam, U. Vosa, A. van der Graaf, L. Franke, J.P. de Magalhaes, Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 19(4), 575–592 (2018). https://doi.org/10.1093/bib/bbw139
doi: 10.1093/bib/bbw139 pubmed: 28077403
P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559
doi: 10.1186/1471-2105-9-559
T. Zhai, D. Muhanhali, X. Jia, Z. Wu, Z. Cai, Y. Ling, Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer. Endocrine 66(3), 573–584 (2019). https://doi.org/10.1007/s12020-019-02021-9
doi: 10.1007/s12020-019-02021-9 pubmed: 31332712
N. Li, X. Zhan, Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 10(3), 273–290 (2019). https://doi.org/10.1007/s13167-019-00175-0
doi: 10.1007/s13167-019-00175-0 pubmed: 31462944 pmcid: 6695468
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303
doi: 10.1101/gr.1239303 pubmed: 403769 pmcid: 403769
E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4), 610–617 (1993). https://doi.org/10.1227/00006123-199310000-00008
doi: 10.1227/00006123-199310000-00008 pubmed: 8232800
O. Mete, S. Ezzat, S.L. Asa, Biomarkers of aggressive pituitary adenomas. J. Mol. Endocrinol. 49(2), R69–R78 (2012). https://doi.org/10.1530/JME-12-0113
doi: 10.1530/JME-12-0113 pubmed: 22822048
F. Conte, G. Fiscon, V. Licursi, D. Bizzarri, T. D’Anto, L. Farina, P. Paci, A paradigm shift in medicine: a comprehensive review of network-based approaches. Biochim. Biophys. Acta Gene Regul. Mech., 194416 (2019). https://doi.org/10.1016/j.bbagrm.2019.194416
A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). https://doi.org/10.1038/nrg2918
doi: 10.1038/nrg2918 pubmed: 21164525 pmcid: 3140052
B. Aydin, K.Y. Arga, Co-expression network analysis elucidated a core module in association with prognosis of non-functioning non-invasive human pituitary adenoma. Front. Endocrinol. 10, 361 (2019). https://doi.org/10.3389/fendo.2019.00361
doi: 10.3389/fendo.2019.00361
W. Xing, Z. Qi, C. Huang, N. Zhang, W. Zhang, Y. Li, M. Qiu, Q. Fang, G. Hui, Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol. Open 8(1), (2019). https://doi.org/10.1242/bio.037127
H. Joshi, B. Vastrad, C. Vastrad, Identification of important invasion-related genes in non-functional pituitary adenomas. J. Mol. Neurosci. 68(4), 565–589 (2019). https://doi.org/10.1007/s12031-019-01318-8
doi: 10.1007/s12031-019-01318-8 pubmed: 30982163
S.J. Thomas, J.A. Snowden, M.P. Zeidler, S.J. Danson, The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer 113(3), 365–371 (2015). https://doi.org/10.1038/bjc.2015.233
doi: 10.1038/bjc.2015.233 pubmed: 26151455 pmcid: 4522639
J.J. O’Shea, D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, A. Laurence, The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015). https://doi.org/10.1146/annurev-med-051113-024537
doi: 10.1146/annurev-med-051113-024537 pubmed: 25587654 pmcid: 5634336
Y. Asari, K. Kageyama, Y. Nakada, M. Tasso, S. Takayasu, K. Niioka, N. Ishigame, M. Daimon, Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells. Onco Targets Ther. 10, 4329–4338 (2017). https://doi.org/10.2147/OTT.S141345
doi: 10.2147/OTT.S141345 pubmed: 28919782 pmcid: 5590765
R. van der Pas, J.H. van Esch, C. de Bruin, A.H. Danser, A.M. Pereira, P.M. Zelissen, R. Netea-Maier, D.M. Sprij-Mooij, I.M. van den Berg-Garrelds, R.H. van Schaik, S.W. Lamberts, A.H. van den Meiracker, L.J. Hofland, R.A. Feelders, Cushing’s disease and hypertension: in vivo and in vitro study of the role of the renin-angiotensin-aldosterone system and effects of medical therapy. Eur. J. Endocrinol. 170(2), 181–191 (2014). https://doi.org/10.1530/EJE-13-0477
doi: 10.1530/EJE-13-0477 pubmed: 24165019
L. Faggi, A. Giustina, G. Tulipano, Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol. Cell Endocrinol. 470, 60–74 (2018). https://doi.org/10.1016/j.mce.2017.09.030
doi: 10.1016/j.mce.2017.09.030 pubmed: 28962892
A.B. Grossman, The molecular biology of pituitary tumors: a personal perspective. Pituitary 12(3), 265–270 (2009). https://doi.org/10.1007/s11102-008-0158-7
doi: 10.1007/s11102-008-0158-7 pubmed: 19058014
Y. Jin Kim, C. Hyun Kim, J. Hwan Cheong, J. Min Kim, Relationship between expression of vascular endothelial growth factor and intratumoral hemorrhage in human pituitary adenomas. Tumori 97(5), 639–646 (2011). https://doi.org/10.1700/989.10725
doi: 10.1700/989.10725 pubmed: 22158497
R. Sanchez-Ortiga, L. Sanchez-Tejada, O. Moreno-Perez, P. Riesgo, M. Niveiro, A.M. Pico Alfonso, Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 16(3), 370–377 (2013). https://doi.org/10.1007/s11102-012-0434-4
doi: 10.1007/s11102-012-0434-4 pubmed: 22990332
C. Zhao, M. Zhang, W. Liu, C. Wang, Q. Zhang, W. Li, Beta-catenin knockdown inhibits pituitary adenoma cell proliferation and invasion via interfering with AKT and gelatinases expression. Int. J. Oncol. 46(4), 1643–1650 (2015). https://doi.org/10.3892/ijo.2015.2862
doi: 10.3892/ijo.2015.2862 pubmed: 25646597
X. Zhan, D.M. Desiderio, Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med. Genomics 3, 13 (2010). https://doi.org/10.1186/1755-8794-3-13
doi: 10.1186/1755-8794-3-13 pubmed: 20426862 pmcid: 2884164
C. Onofri, M. Theodoropoulou, M. Losa, E. Uhl, M. Lange, E. Arzt, G.K. Stalla, U. Renner, Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J. Endocrinol. 191(1), 249–261 (2006). https://doi.org/10.1677/joe.1.06992
doi: 10.1677/joe.1.06992 pubmed: 17065408
Y. Li, T. Li, Y. Jin, J. Shen, Dgat2 reduces hepatocellular carcinoma malignancy via downregulation of cell cycle-related gene expression. Biomed. Pharmacother. 115, 108950 (2019). https://doi.org/10.1016/j.biopha.2019.108950
doi: 10.1016/j.biopha.2019.108950 pubmed: 31078041
R. Nurminen, T. Rantapero, S.C. Wong, D. Fischer, R. Lehtonen, T.L. Tammela, M. Nykter, T. Visakorpi, T. Wahlfors, J. Schleutker, Expressional profiling of prostate cancer risk SNPs at 11q13.5 identifies DGAT2 as a new target gene. Genes Chromosomes Cancer 55(8), 661–673 (2016). https://doi.org/10.1002/gcc.22368
doi: 10.1002/gcc.22368 pubmed: 27113481
Y. Han, Z. Wang, S. Sun, Z. Zhang, J. Liu, X. Jin, P. Wu, T. Ji, W. Ding, B. Wang, Q. Gao, Decreased DHRS2 expression is associated with HDACi resistance and poor prognosis in ovarian cancer. Epigenetics 15(1–2), 122–133 (2020). https://doi.org/10.1080/15592294.2019.1656155
doi: 10.1080/15592294.2019.1656155 pubmed: 31423895
Y. Zhou, L. Wang, X. Ban, T. Zeng, Y. Zhu, M. Li, X.Y. Guan, Y. Li, DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 37(8), 1086–1094 (2018). https://doi.org/10.1038/onc.2017.383
doi: 10.1038/onc.2017.383 pubmed: 29106393
B.W. Taron, P.A. Colussi, J.M. Wiedman, P. Orlean, C.H. Taron, Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279(34), 36083–36092 (2004). https://doi.org/10.1074/jbc.M405081200
doi: 10.1074/jbc.M405081200 pubmed: 15208306
S.L. Asa, Practical pituitary pathology: what does the pathologist need to know? Arch. Pathol. Lab. Med. 132(8), 1231–1240 (2008). https://doi.org/10.1043/1543-2165(2008)132[1231:PPPWDT]2.0.CO;2
doi: 10.1043/1543-2165(2008)132[1231:PPPWDT]2.0.CO;2 pubmed: 18684022
O. Mete, S.L. Asa, Clinicopathological correlations in pituitary adenomas. Brain Pathol. 22(4), 443–453 (2012). https://doi.org/10.1111/j.1750-3639.2012.00599.x
doi: 10.1111/j.1750-3639.2012.00599.x pubmed: 22697380
H. Nishioka, N. Inoshita, O. Mete, S.L. Asa, K. Hayashi, A. Takeshita, N. Fukuhara, M. Yamaguchi-Okada, Y. Takeuchi, S. Yamada, The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr. Pathol. 26(4), 349–355 (2015). https://doi.org/10.1007/s12022-015-9398-z
doi: 10.1007/s12022-015-9398-z pubmed: 26481628
R.S. Viger, S.M. Guittot, M. Anttonen, D.B. Wilson, M. Heikinheimo, Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22(4), 781–798 (2008). https://doi.org/10.1210/me.2007-0513
doi: 10.1210/me.2007-0513 pubmed: 18174356 pmcid: 2276466
M. Pihlajoki, A. Farkkila, T. Soini, M. Heikinheimo, D.B. Wilson, GATA factors in endocrine neoplasia. Mol. Cell Endocrinol. 421, 2–17 (2016). https://doi.org/10.1016/j.mce.2015.05.027
doi: 10.1016/j.mce.2015.05.027 pubmed: 26027919
J. He, J.J. Yu, Q. Xu, L. Wang, J.Z. Zheng, L.Z. Liu, B.H. Jiang, Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 11(2), 373–384 (2015). https://doi.org/10.1080/15548627.2015.1009781
doi: 10.1080/15548627.2015.1009781 pubmed: 25650716 pmcid: 4502709
H.T. Liu, S. Liu, L. Liu, R.R. Ma, P. Gao, EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 78(20), 5877–5890 (2018). https://doi.org/10.1158/0008-5472.CAN-18-1011
doi: 10.1158/0008-5472.CAN-18-1011 pubmed: 30185552 pmcid: 6191331
L. Li, A.H. Ameri, S. Wang, K.H. Jansson, O.M. Casey, Q. Yang, M.L. Beshiri, L. Fang, R.G. Lake, S. Agarwal, A.N. Alilin, W. Xu, J. Yin, K. Kelly, EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 38(35), 6241–6255 (2019). https://doi.org/10.1038/s41388-019-0873-8
doi: 10.1038/s41388-019-0873-8 pubmed: 31312026 pmcid: 6715537
S.W. Sun, X.M. Fang, Y.F. Li, Q.B. Wang, Y.X. Li, Expression and clinical significance of EGR-1 and PTEN in the pituitary tumors of elderly patients. Oncol. Lett. 14(2), 2165–2169 (2017). https://doi.org/10.3892/ol.2017.6375
doi: 10.3892/ol.2017.6375 pubmed: 28789441 pmcid: 5530027
L. Xu, Y. Chen, M. Dutra-Clarke, A. Mayakonda, M. Hazawa, S.E. Savinoff, N. Doan, J.W. Said, W.H. Yong, A. Watkins, H. Yang, L.W. Ding, Y.Y. Jiang, J.W. Tyner, J. Ching, J.P. Kovalik, V. Madan, S.L. Chan, M. Muschen, J.J. Breunig, D.C. Lin, H.P. Koeffler, BCL6 promotes glioma and serves as a therapeutic target. Proc. Natl Acad. Sci. USA 114(15), 3981–3986 (2017). https://doi.org/10.1073/pnas.1609758114
doi: 10.1073/pnas.1609758114 pubmed: 28356518

Auteurs

Yuancheng Zhou (Y)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China.

Xiaorui Fu (X)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
Medical Department, Queen Mary College , Nanchang University, Nanchang, Jiangxi, China.

Zhicheng Zheng (Z)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
The Fourth Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China.

Yu Ren (Y)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China.

Zijian Zheng (Z)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China.

Bohan Zhang (B)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China.

Min Yuan (M)

Shanggao County People's Hospital, Yichun, Jiangxi, PR China.

Jian Duan (J)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.

Meihua Li (M)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.

Tao Hong (T)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.

Guohui Lu (G)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China. guohui-lu@163.com.

Dongwei Zhou (D)

Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China. zhoudongwei313zx@sohu.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH