Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles.
Bisecting GlcNAc
Glycoengineering
N-glycosylation
RhuEPO
Tobacco
β1,4-galactosylation
Journal
International journal of biological macromolecules
ISSN: 1879-0003
Titre abrégé: Int J Biol Macromol
Pays: Netherlands
ID NLM: 7909578
Informations de publication
Date de publication:
15 Aug 2020
15 Aug 2020
Historique:
received:
24
02
2020
revised:
31
03
2020
accepted:
23
04
2020
pubmed:
30
4
2020
medline:
9
3
2021
entrez:
30
4
2020
Statut:
ppublish
Résumé
Plant-based expression system has many potential advantages to produce biopharmaceuticals, but plants cannot be directly used to express human glycoproteins because of their differences in glycosylation abilities from mammals. To exploit plant-based expression system for producing recombinant human erythropoietin (rhuEPO), we glycoengineered tobacco plants by stably introducing seven to eight mammalian genes including a target human EPO into tobacco in order to generate capacities for β1,4-galactosylation, bisecting N-acetylglucosamine (GlcNAc) and sialylation. Wild type human β1,4-galactosyltransferase gene (GalT) or a chimeric GalT gene (ST/GalT) was co-expressed to produce rhuEPO bearing β1,4-galactose-extended N-glycan chains as well as compare their β1,4-galactosylation efficiencies. Five mammalian genes encoding enzymes/transporter for sialic acid biosynthesis, transport and transfer were co-expressed to build sialylation capacity in plants. The human MGAT3 was co-expressed to produce N-glycan chains with bisecting GlcNAc. Our results demonstrated that the above transgenes were incorporated into tobacco genome and transcribed. ST/GalT was found to be more efficient than GalT for β1,4-galactosylation. Furthermore, co-expressing MGAT3 generated N-glycans likely bearing bisected GlcNAc. However, our current efforts did not result in generating sialylation capacity. Created transgenic plants expressing EPO and ST/GalT could be used to produce rhuEPO with high proportion of β1,4-galactose-extended N-glycan chains for tissue protective purposes.
Identifiants
pubmed: 32348856
pii: S0141-8130(20)33064-6
doi: 10.1016/j.ijbiomac.2020.04.199
pmc: PMC8349175
mid: NIHMS1724977
pii:
doi:
Substances chimiques
Polysaccharides
0
Recombinant Proteins
0
Erythropoietin
11096-26-7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
158-169Subventions
Organisme : NIGMS NIH HHS
ID : R24 GM137782
Pays : United States
Organisme : NIH HHS
ID : S10 OD018530
Pays : United States
Organisme : NIGMS NIH HHS
ID : SC1 GM111178
Pays : United States
Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare no competing interest.
Références
Front Pharmacol. 2017 Apr 19;8:208
pubmed: 28469576
Mol Cell Proteomics. 2010 Aug;9(8):1716-28
pubmed: 20103567
Plant Mol Biol. 1998 Sep;38(1-2):31-48
pubmed: 9738959
Blood. 2001 Dec 15;98(13):3626-34
pubmed: 11739166
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4692-7
pubmed: 10200324
Blood. 1989 Jan;73(1):84-9
pubmed: 2910371
Glycobiology. 2000 May;10(5):511-9
pubmed: 10764840
J Biol Chem. 1984 Nov 10;259(21):13370-8
pubmed: 6238035
PLoS One. 2013 Oct 04;8(10):e76468
pubmed: 24124563
Plant Biotechnol J. 2007 May;5(3):389-401
pubmed: 17359496
Glycobiology. 1991 Sep;1(4):337-46
pubmed: 1820196
Plant Cell. 1998 Oct;10(10):1759-68
pubmed: 9761801
Cell Death Differ. 2004 Jul;11 Suppl 1:S37-44
pubmed: 15243580
Plant Cell. 1990 Jan;2(1):51-9
pubmed: 1967050
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4802-6
pubmed: 12663857
Eur J Biochem. 1990 Mar 10;188(2):405-11
pubmed: 2156701
Blood. 1991 Jun 15;77(12):2624-32
pubmed: 2043765
Curr Mol Med. 2009 Sep;9(7):774-800
pubmed: 19860659
Mol Gen Genet. 1978 Jul 11;163(2):181-7
pubmed: 355847
J Biol Chem. 2009 Jul 31;284(31):20479-85
pubmed: 19478090
Physiol Rev. 1992 Apr;72(2):449-89
pubmed: 1557429
Liver Transpl. 2010 May;16(5):631-8
pubmed: 20440772
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Front Bioeng Biotechnol. 2018 Jun 14;6:81
pubmed: 29963553
Curr Opin Plant Biol. 2004 Apr;7(2):171-81
pubmed: 15003218
J Intern Med. 2008 Nov;264(5):405-32
pubmed: 19017170
Plant Biotechnol J. 2012 Sep;10(7):851-61
pubmed: 22621344
Nat Rev Genet. 2003 Oct;4(10):794-805
pubmed: 14526375
Biotechnol Genet Eng Rev. 2012;28:147-75
pubmed: 22616486
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14907-12
pubmed: 15456912
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7577-82
pubmed: 16675551
Biotechnol Prog. 2005 Nov-Dec;21(6):1644-52
pubmed: 16321047
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9498-503
pubmed: 27444013
J Cereb Blood Flow Metab. 2001 Jul;21(7):857-64
pubmed: 11435798
Front Plant Sci. 2014 Jul 22;5:363
pubmed: 25101107
Biotechnol J. 2013 Mar;8(3):371-82
pubmed: 23325672
Plant Cell Rep. 2012 Jul;31(7):1233-43
pubmed: 22371257
J Biotechnol. 2010 Mar;146(1-2):54-65
pubmed: 20083147
Plant Biotechnol J. 2009 Jan;7(1):33-48
pubmed: 18778316
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2899-904
pubmed: 11226338
Cardiovasc Res. 2003 Sep 1;59(3):538-48
pubmed: 14499855
Biochem Biophys Rep. 2019 Jan 09;17:157-168
pubmed: 30671548
Glycobiology. 2007 Mar;17(3):334-44
pubmed: 17179169
Glycobiology. 2011 Jun;21(6):813-23
pubmed: 21317243
J Biol Chem. 2010 May 21;285(21):15923-30
pubmed: 20305285
Xenotransplantation. 2011 Jan-Feb;18(1):1-5
pubmed: 21342282
Glycobiology. 2000 May;10(5):477-86
pubmed: 10764836
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10526-31
pubmed: 10984541
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6741-6
pubmed: 12746497
Nephrol Dial Transplant. 2004 Feb;19(2):348-55
pubmed: 14736958
PLoS One. 2013;8(1):e54836
pubmed: 23372778