Nitric Oxide Mediated Degradation of CYP2A6 via the Ubiquitin-Proteasome Pathway in Human Hepatoma Cells.
Cell Line, Tumor
Cigarette Smoking
/ metabolism
Cytochrome P-450 CYP2A6
/ antagonists & inhibitors
Down-Regulation
/ drug effects
Humans
Nicotine
/ metabolism
Nitric Oxide
/ metabolism
Proteasome Endopeptidase Complex
/ metabolism
Proteasome Inhibitors
/ pharmacology
Protein Synthesis Inhibitors
/ pharmacology
Proteolysis
/ drug effects
Ubiquitination
/ drug effects
Journal
Drug metabolism and disposition: the biological fate of chemicals
ISSN: 1521-009X
Titre abrégé: Drug Metab Dispos
Pays: United States
ID NLM: 9421550
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
07
11
2019
accepted:
06
04
2020
pubmed:
1
5
2020
medline:
9
9
2021
entrez:
1
5
2020
Statut:
ppublish
Résumé
Several cytochrome P450 enzymes are known to be down-regulated by nitric oxide (NO). CYP2A6 is responsible for the metabolism of nicotine and several other xenobiotics, but its susceptibility to down-regulation by NO has not been reported. To address this question, we used Huh7 human hepatoma cell lines to express CYP2A6 with a C-terminal V5 tag (CYP2A6V5). NO donor treatment [dipropylenetriamine NONOate (DPTA)] down-regulated CYP2A6 protein to approximately 40% of control levels in 4 hours. An NO scavenging agent protected CYP2A6 from down-regulation by DPTA in a concentration-dependent manner, demonstrating that the down-regulation is NO-dependent. Experiments with the protein synthesis inhibitor cycloheximide showed that CYP2A6 protein down-regulation occurs posttranslationally. In the presence of proteasome inhibitors MG132 or bortezomib, NO-treated cells showed an accumulation of a high molecular mass signal, whereas autophagy inhibitors chloroquine and 3-methyladenine and the lysosomal and calpain inhibitor E64d had no effect. Immunoprecipitation of CYP2A6 followed by Western blotting with an antiubiquitin antibody showed that the high molecular mass species contain polyubiquitinated CYP2A6 protein. This suggests that NO led to the degradation of protein via the ubiquitin-proteasome pathway. The down-regulation by NO was blocked by the reversible CYP2A6 inhibitor pilocarpine but not by the suicide inhibitor methoxsalen, demonstrating that down-regulation requires NO access to the active site but does not require catalytic activity of the enzyme. These findings provide novel insights toward the regulation of CYP2A6 in a human cell line and can influence our understanding of CYP2A6-related drug metabolism. SIGNIFICANCE STATEMENT: This study demonstrates that the nicotine metabolizing enzyme CYP2A6 is down-regulated by nitric oxide, a molecule produced in large amounts in the context of inflammation and that is also inhaled from cigarette smoke. This occurs via ubiquitination and proteasomal degradation, and does not require catalytic activity of the enzyme. This work adds to the growing knowledge of the selective effect and mechanism of action of nitric oxide (NO) on cytochrome P450 enzymes and suggests a possible novel mode of interaction between nicotine and NO in cigarette smokers.
Identifiants
pubmed: 32350062
pii: dmd.119.089961
doi: 10.1124/dmd.119.089961
pmc: PMC7289052
doi:
Substances chimiques
Proteasome Inhibitors
0
Protein Synthesis Inhibitors
0
Nitric Oxide
31C4KY9ESH
Nicotine
6M3C89ZY6R
CYP2A6 protein, human
EC 1.14.14.1
Cytochrome P-450 CYP2A6
EC 1.14.14.1
Proteasome Endopeptidase Complex
EC 3.4.25.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
544-552Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM069971
Pays : United States
Informations de copyright
Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.
Références
Free Radic Biol Med. 2006 Jun 15;40(12):2112-25
pubmed: 16785025
Exp Biol Med (Maywood). 2015 Jun;240(6):711-7
pubmed: 25888647
Nicotine Tob Res. 1999;1 Suppl 2:S63-7; discussion S69-70
pubmed: 11768189
Circulation. 2011 Jul 19;124(3):335-45
pubmed: 21730307
Nicotine Tob Res. 2002 Aug;4(3):341-8
pubmed: 12215243
Anal Biochem. 1997 Jun 15;249(1):1-9
pubmed: 9193701
Mol Cell Biol. 2004 Jan;24(1):330-7
pubmed: 14673166
Drug Metab Dispos. 2012 Sep;40(9):1797-802
pubmed: 22696418
J Biol Chem. 1998 Sep 11;273(37):24266-71
pubmed: 9727051
Curr Aging Sci. 2017;10(4):246-262
pubmed: 28302048
Curr Med Chem. 2018;25(29):3435-3454
pubmed: 29473494
Acc Chem Res. 2013 Feb 19;46(2):550-9
pubmed: 23157446
J Biol Chem. 1995 Oct 20;270(42):25233-8
pubmed: 7559661
Mass Spectrom Rev. 2015 Mar-Apr;34(2):166-83
pubmed: 24889964
Redox Biol. 2018 Apr;14:618-625
pubmed: 29154193
Antioxid Redox Signal. 2017 Sep 1;27(7):433-451
pubmed: 28006950
Gene. 2017 Sep 10;628:205-210
pubmed: 28734893
PLoS One. 2017 May 25;12(5):e0178435
pubmed: 28542511
Neuroscience. 2014 Jan 3;256:126-36
pubmed: 24157928
Ther Drug Monit. 2002 Feb;24(1):163-71
pubmed: 11805739
Nitric Oxide. 2008 Sep;19(2):68-72
pubmed: 18503780
FEBS J. 2012 May;279(9):1621-31
pubmed: 22051186
Biochem J. 2017 Sep 14;474(19):3241-3252
pubmed: 28830911
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5839-5848
pubmed: 29802228
Redox Biol. 2018 Oct;19:1-10
pubmed: 30081385
J Pharmacol Exp Ther. 2014 Jan;348(1):141-52
pubmed: 24144795
Mol Neurobiol. 2015 Feb;51(1):268-80
pubmed: 24664522
Proc Natl Acad Sci U S A. 1977 Aug;74(8):3203-7
pubmed: 20623
Neurobiol Dis. 2015 Dec;84:99-108
pubmed: 25796565
Free Radic Biol Med. 2008 Mar 15;44(6):1161-8
pubmed: 18206661
In Vivo. 1999 May-Jun;13(3):295-309
pubmed: 10459507
Free Radic Biol Med. 2017 Jul;108:478-486
pubmed: 28427998
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12312-7
pubmed: 17636120
J Biol Chem. 2012 Feb 10;287(7):4411-8
pubmed: 22147701
Nitric Oxide. 2018 Jun 1;76:97-104
pubmed: 29578056
Biochemistry. 1998 Jul 14;37(28):10047-61
pubmed: 9665710
Acc Chem Res. 2015 Jul 21;48(7):2117-25
pubmed: 26114618
Arch Biochem Biophys. 2017 May 15;622:9-25
pubmed: 28412156
Clin Pharmacokinet. 1996 May;30(5):372-84
pubmed: 8743336
J Biol Chem. 2007 Jun 8;282(23):17306-13
pubmed: 17428784
Antioxid Redox Signal. 2017 Jan 20;26(3):137-149
pubmed: 26906466
Arch Biochem Biophys. 2000 Apr 1;376(1):149-55
pubmed: 10729200
Antioxid Redox Signal. 2012 Oct 1;17(7):969-80
pubmed: 22468855
Nat Struct Mol Biol. 2005 Sep;12(9):822-3
pubmed: 16086027
Trends Biochem Sci. 2002 Oct;27(10):489-92
pubmed: 12368076
Br J Pharmacol. 2002 Jan;135(2):373-82
pubmed: 11815372
Free Radic Biol Med. 2018 Jun;121:149-156
pubmed: 29715548
Drug Metabol Drug Interact. 2012 May 05;27(2):73-88
pubmed: 22706231
J Biol Chem. 2008 Jan 11;283(2):889-98
pubmed: 17993647