Highly pathogenic H5N6 avian influenza virus subtype clade 2.3.4.4 indigenous in South Korea.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 04 2020
29 04 2020
Historique:
received:
18
02
2020
accepted:
10
04
2020
entrez:
1
5
2020
pubmed:
1
5
2020
medline:
7
1
2021
Statut:
epublish
Résumé
The outbreaks of the highly pathogenic avian influenza (HPAI) in 2016-2017 and 2017-2018, caused by novel reassortant clade 2.3.4.4 H5N6 viruses, resulted in the loss of one billion birds in South Korea. Here, we characterized the H5N6 viruses isolated from wild birds in South Korea from December 2017 to August 2019 by next-generation sequencing. The results indicated that clade 2.3.4.4 H5N6 viruses isolated in 2017 and 2019 shared almost identical nucleotide sequences with the HPAI H5N6 viruses from 2016 in South Korea. This repeated detection of evolutionarily identical H5N6 viruses in same region for more than three years may suggest indigenization of the HPAI H5N6 virus in South Korea. Phylogenetic analysis demonstrated that the clade 2.3.4.4 H5N6 viruses isolated in 2017 and 2019 were evolutionarily distinct from those isolated in 2018. Molecular analysis revealed that the H5N6 viruses isolated in 2017 and 2019 had features associated with an increased risk of human infection (e.g. a deletion at position 133 of HA and glutamic acid residue at position 92 of NS1). Overall, these genomic features of HPAI H5N6 viruses highlight the need for continuous monitoring of avian influenza viruses in wild migratory birds as well as in domestic birds.
Identifiants
pubmed: 32350323
doi: 10.1038/s41598-020-64125-x
pii: 10.1038/s41598-020-64125-x
pmc: PMC7190616
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7241Commentaires et corrections
Type : ErratumIn
Références
World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14, e1, https://doi.org/10.3201/eid1407.071681 (2008).
doi: 10.3201/eid1407.071681
Bi, Y. et al. Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China. Cell Host Microbe 20, 810–821, https://doi.org/10.1016/j.chom.2016.10.022 (2016).
doi: 10.1016/j.chom.2016.10.022
pubmed: 27916476
Poen, M. J. et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 5, vez004, https://doi.org/10.1093/ve/vez004 (2019).
doi: 10.1093/ve/vez004
pubmed: 31024736
pmcid: 6476160
Baek, Y. G. et al. A novel reassortant clade 2.3.4.4 highly pathogenic avian influenza H5N6 virus identified in South Korea in 2018. Infect. Genet. Evol. 78, 104056, https://doi.org/10.1016/j.meegid.2019.104056 (2020).
doi: 10.1016/j.meegid.2019.104056
pubmed: 31683010
Kwon, J. H. et al. New Reassortant Clade 2.3.4.4b Avian Influenza A(H5N6) Virus in Wild Birds, South Korea, 2017–18. Emerg. Infect. Dis. 24, 1953–1955, https://doi.org/10.3201/eid2410.180461 (2018).
doi: 10.3201/eid2410.180461
pubmed: 30226181
pmcid: 6154165
Lee, D. H. et al. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015. Emerg. Infect. Dis. 22, 1283–1285, https://doi.org/10.3201/eid2207.160048 (2016).
doi: 10.3201/eid2207.160048
pubmed: 27314845
pmcid: 4918163
Kwon, J. H. et al. Reassortant Clade 2.3.4.4 Avian Influenza A(H5N6) Virus in a Wild Mandarin Duck, South Korea, 2016. Emerg. Infect. Dis. 23, 822–826, https://doi.org/10.3201/eid2305.161905 (2017).
doi: 10.3201/eid2305.161905
pubmed: 28240976
pmcid: 5403023
Lee, E. K. et al. Characterization of a novel reassortant H5N6 highly pathogenic avian influenza virus clade 2.3.4.4 in Korea, 2017. Emerg. Microbes Infect. 7, 103, https://doi.org/10.1038/s41426-018-0104-3 (2018).
doi: 10.1038/s41426-018-0104-3
pubmed: 29895932
pmcid: 5997646
Si, Y. J. et al. Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016. Euro Surveill 22, https://doi.org/10.2807/1560-7917.ES.2017.22.1.30434 (2017).
Lee, Y. N. et al. Novel reassortants of clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses possessing genetic heterogeneity in South Korea in late 2017. J. Vet. Sci. 19, 850–854, https://doi.org/10.4142/jvs.2018.19.6.850 (2018).
doi: 10.4142/jvs.2018.19.6.850
pubmed: 30173498
pmcid: 6265581
Kim, Y. I. et al. Pathogenicity and genetic characterisation of a novel reassortant, highly pathogenic avian influenza (HPAI) H5N6 virus isolated in Korea, 2017. Euro Surveill 23, https://doi.org/10.2807/1560-7917.ES.2018.23.7.18-00045 (2018).
KAHIS. Korea Animal Health Integrated System. Available online, https://www.kahis.go.kr/ (2018).
Herfst, S. et al. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere 3, https://doi.org/10.1128/mSphere.00405-17 (2018).
Zamarin, D., Ortigoza, M. B. & Palese, P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol. 80, 7976–7983, https://doi.org/10.1128/JVI.00415-06 (2006).
doi: 10.1128/JVI.00415-06
pubmed: 16873254
pmcid: 1563817
Kwon, H. I. et al. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerg. Microbes Infect. 7, 29, https://doi.org/10.1038/s41426-018-0029-x (2018).
doi: 10.1038/s41426-018-0029-x
pubmed: 29535296
pmcid: 5849756
Hoffmann, T. W. et al. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks. J. Virol. 86, 584–588, https://doi.org/10.1128/JVI.05474-11 (2012).
doi: 10.1128/JVI.05474-11
pubmed: 22013034
pmcid: 3255888
Das, K. et al. Structural basis for suppression of a host antiviral response by influenza A virus. Proc. Natl Acad. Sci. USA 105, 13093–13098, https://doi.org/10.1073/pnas.0805213105 (2008).
doi: 10.1073/pnas.0805213105
pubmed: 18725644
Soubies, S. M. et al. Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. J. Virol. 84, 6733–6747, https://doi.org/10.1128/JVI.02427-09 (2010).
doi: 10.1128/JVI.02427-09
pubmed: 20410267
pmcid: 2903243
Kim, H. K., Jeong, D. G. & Yoon, S. W. Recent outbreaks of highly pathogenic avian influenza viruses in South Korea. Clin. Exp. Vaccine Res. 6, 95–103, https://doi.org/10.7774/cevr.2017.6.2.95 (2017).
doi: 10.7774/cevr.2017.6.2.95
pubmed: 28775973
pmcid: 5540969
Kang, H. M. et al. Novel reassortant influenza A(H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg. Infect. Dis. 21, 298–304, https://doi.org/10.3201/eid2102.141268 (2015).
doi: 10.3201/eid2102.141268
pubmed: 25625281
pmcid: 4313655
WHO Avian Influenza Weekly Update Number 629. Available online, https://www.who.int/docs/default-source/wpro–documents/emergency/surveillance/avian-influenza/ai-20191213.pdf?sfvrsn=30d65594_44 .
Adlhoch, C. et al. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005. Euro Surveill. 19, 20996, https://doi.org/10.2807/1560-7917.es2014.19.50.20996 (2014).
doi: 10.2807/1560-7917.es2014.19.50.20996
pubmed: 25597538
Poen, M. J. et al. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Euro Surveill 23, https://doi.org/10.2807/1560-7917.ES.2018.23.4.17-00449 (2018).
Stech, O. et al. The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken. Sci. Rep. 5, 13493, https://doi.org/10.1038/srep13493 (2015).
doi: 10.1038/srep13493
pubmed: 26306544
pmcid: 4549673
Iqbal, M., Yaqub, T., Reddy, K. & McCauley, J. W. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One 4, e5788, https://doi.org/10.1371/journal.pone.0005788 (2009).
doi: 10.1371/journal.pone.0005788
pubmed: 19517011
pmcid: 2690689
Watanabe, Y. et al. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 7, e1002068, https://doi.org/10.1371/journal.ppat.1002068 (2011).
doi: 10.1371/journal.ppat.1002068
pubmed: 21637809
pmcid: 3102706
Shelton, H., Roberts, K. L., Molesti, E., Temperton, N. & Barclay, W. S. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J. Gen. Virol. 94, 1220–1229, https://doi.org/10.1099/vir.0.050526-0 (2013).
doi: 10.1099/vir.0.050526-0
pubmed: 23486663
pmcid: 3709624
Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza Other Respir. Viruses 6, 404–416, https://doi.org/10.1111/j.1750-2659.2011.00331.x (2012).
doi: 10.1111/j.1750-2659.2011.00331.x
pubmed: 22260278
pmcid: 3345175
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549, https://doi.org/10.1093/molbev/msy096 (2018).
doi: 10.1093/molbev/msy096
pubmed: 29722887
pmcid: 5967553