Latitudinal drivers of oyster mortality: deciphering host, pathogen and environmental risk factors.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 04 2020
Historique:
received: 09 01 2020
accepted: 04 04 2020
entrez: 1 5 2020
pubmed: 1 5 2020
medline: 7 1 2021
Statut: epublish

Résumé

Diseases pose an ongoing threat to aquaculture, fisheries and conservation of marine species, and determination of risk factors of disease is crucial for management. Our objective was to decipher the effects of host, pathogen and environmental factors on disease-induced mortality of Pacific oysters (Crassostrea gigas) across a latitudinal gradient. We deployed young and adult oysters at 13 sites in France and we monitored survival, pathogens and environmental parameters. The young oysters came from either the wild collection or the hatchery while the adults were from the wild only. We then used Cox regression models to investigate the effect of latitude, site, environmental factors and origin on mortality risk and to extrapolate this mortality risk to the distribution limits of the species in Europe. We found that seawater temperature, food level, sea level atmospheric pressure, rainfall and wind speed were associated with mortality risk. Their effect on hatchery oysters was generally higher than on wild animals, probably reflecting that hatchery oysters were free of Ostreid herpesvirus 1 (OsHV-1) whereas those from the wild were asymptomatic carriers. The risk factors involved in young and adult oyster mortalities were different, reflecting distinct diseases. Mortality risk increases from 0 to 90% with decreasing latitude for young hatchery oysters, but not for young wild oysters or adults. Mortality risk was higher in wild oysters than in hatchery ones at latitude > 47.6°N while this was the opposite at lower latitude. Therefore, latitudinal gradient alters disease-induced mortality risk but interacts with the initial health status of the host and the pathogen involved. Practically, we suggest that mortality can be mitigated by using hatchery oysters in north and wild collected oysters in the south.

Identifiants

pubmed: 32350335
doi: 10.1038/s41598-020-64086-1
pii: 10.1038/s41598-020-64086-1
pmc: PMC7190702
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7264

Références

Burge, C. A. et al. Climate Change Influences on Marine Infectious Diseases: Implications for Management and Society. Ann Rev Mar Sci 6, 249–277, https://doi.org/10.1146/annurev-marine-010213-135029 (2014).
doi: 10.1146/annurev-marine-010213-135029
Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci 7, 471–496, https://doi.org/10.1146/annurev-marine-010814-015646 (2015).
doi: 10.1146/annurev-marine-010814-015646
Barbosa Solomieu, V., Renault, T. & Travers, M.-A. Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol. 131, 2–10, https://doi.org/10.1016/j.jip.2015.07.011 (2015).
doi: 10.1016/j.jip.2015.07.011
AHAW, E. P. A. H. W. Oyster mortality EFSA Panel on Animal Health and Welfare (AHAW). Efsa Journal 13, https://doi.org/10.2903/j.efsa.2015.4122 (2015).
Pernet, F., Lupo, C., Bacher, C. & Whittington, R. J. Infectious diseases in oyster aquaculture require a new integrated approach. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371, 20150213, https://doi.org/10.1098/rstb.2015.0213 (2016).
doi: 10.1098/rstb.2015.0213 pmcid: 4760143 pubmed: 4760143
EFSA. Scientific Opinion of the Panel on Animal Health and Welfare on a request from the European Commission on the increased mortality events in Pacific oysters Crassostrea gigas. EFSA 8, 1894–1953, https://doi.org/10.2903/j.efsa.2010 (2010).
doi: 10.2903/j.efsa.2010
Segarra, A. et al. Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res. 153, 92–99, https://doi.org/10.1016/j.virusres.2010.07.011 (2010).
doi: 10.1016/j.virusres.2010.07.011
Pernet, F. et al. Mass mortalities of Pacific oysters Crassostrea gigas reflect infectious diseases and vary with farming practises in the Mediterranean Thau lagoon. France. Aquaculture Env. Interact. 2, 215–237, https://doi.org/10.3354/aei00041 (2012).
doi: 10.3354/aei00041
Renault, T., Bouquet, A. L., Maurice, J.-T., Lupo, C. & Blachier, P. Ostreid herpesvirus 1 infection among Pacific oyster (Crassostrea gigas) spat: relevance of water temperature to virus replication and circulation prior to the onset of mortality. Appl. Environ. Microbiol. 80, 5419–5426, https://doi.org/10.1128/aem.00484-14 (2014).
doi: 10.1128/aem.00484-14 pmcid: 4136091 pubmed: 4136091
Paul-Pont, I., Evans, O., Dhand, N. K. & Whittington, R. J. Experimental infections of Pacific oyster Crassostrea gigas using the Australian ostreid herpesvirus-1 (OsHV-1) µVar strain. Dis. Aquat. Org. 113, 137–147, https://doi.org/10.3354/dao02826 (2015).
doi: 10.3354/dao02826
Petton, B. et al. Fine-scale temporal dynamics of herpes virus and vibrios in seawater during a polymicrobial infection in the Pacific oyster Crassostrea gigas. Disease of Aquatic Organism 135, 97–106, https://doi.org/10.3354/dao03384 (2019).
doi: 10.3354/dao03384
Pernet, F., Tamayo, D. & Petton, B. Influence of low temperatures on the survival of the Pacific oyster (Crassostrea gigas) infected with ostreid herpes virus type 1. Aquaculture 445, 57–62, https://doi.org/10.1016/j.aquaculture.2015.04.010 (2015).
doi: 10.1016/j.aquaculture.2015.04.010
Petton, B., Boudry, P., Alunno-Bruscia, M. & Pernet, F. Factors influencing disease-induced mortality of Pacific oysters Crassostrea gigas. Aquaculture Env. Interact. 6, 205–222, https://doi.org/10.3354/aei00125 (2015).
doi: 10.3354/aei00125
Gangnery, A. et al. Connectivities with shellfish farms and channel rivers are associated with mortality risk in oysters. Aquaculture Env. Interact. 11, 493–506, https://doi.org/10.3354/aei00327 (2019).
doi: 10.3354/aei00327
Pernet, F. et al. Determination of risk factors for herpesvirus outbreak in oysters using a broad-scale spatial epidemiology framework. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-29238-4 (2018).
Pernet, F. et al. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality. PLoS ONE 9, e88469, https://doi.org/10.1371/journal.pone.0088469 (2014).
doi: 10.1371/journal.pone.0088469 pmcid: 3925110 pubmed: 3925110
Segarra, A. et al. Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas. Vet. Res. 45, 1–10, https://doi.org/10.1186/s13567-014-0103-x (2014).
doi: 10.1186/s13567-014-0103-x
Dégremont, L. Size and genotype affect resistance to mortality caused by OsHV-1 in Crassostrea gigas. Aquaculture 416–417, 129–134, https://doi.org/10.1016/j.aquaculture.2013.09.011 (2013).
doi: 10.1016/j.aquaculture.2013.09.011
Azema, P., Travers, M. A., Benabdelmouna, A. & Degremont, L. Single or dual experimental infections with Vibrio aestuarianus and OsHV-1 in diploid and triploid Crassostrea gigas at the spat, juvenile and adult stages. J. Invertebr. Pathol. 139, 92–101, https://doi.org/10.1016/j.jip.2016.08.002 (2016).
doi: 10.1016/j.jip.2016.08.002
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol., 385-397 (1989).
Peterson, A. T. Biogeography of diseases: a framework for analysis. Naturwissenschaften 95, 483–491 (2008).
doi: 10.1007/s00114-008-0352-5 pubmed: 7079904
Morand, S. & Krasnov, B. R. The biogeography of host-parasite interactions. (Oxford University Press, 2010).
Pernet, F. et al. Farmer monitoring reveals the effect of tidal height on mortality risk of oysters during a herpesvirus outbreak. ICES J. Mar. Sci., https://doi.org/10.1093/icesjms/fsz074 (2019).
Thomas, Y. et al. Global change and climate-driven invasion of the Pacific oyster (Crassostrea gigas) along European coasts: a bioenergetics modelling approach. J. Biogeogr., https://doi.org/10.1111/jbi.12665 (2015).
Martenot, C., Oden, E., Travaillé, E., Malas, J. P. & Houssin, M. Comparison of two real-time PCR methods for detection of ostreid herpesvirus 1 in the Pacific oyster Crassostrea gigas. J. Virol. Methods 170, 86–89, https://doi.org/10.1016/j.jviromet.2010.09.003 (2010).
doi: 10.1016/j.jviromet.2010.09.003
Saulnier, D., De Decker, S., Tourbiez, D. & Travers, M. A. Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial cultures. J. Microbiol. Meth. 140, 67–69, https://doi.org/10.1016/j.mimet.2017.07.002 (2017).
doi: 10.1016/j.mimet.2017.07.002
Kaplan, E. L. & Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 53, 457–481, https://doi.org/10.1080/01621459.1958.10501452 (1958).
doi: 10.1080/01621459.1958.10501452
Cox, D. R. Regression Models and Life Tables. J. R. Stat. Soc. Series B Stat. Methodol. 20, 187–220, https://doi.org/10.1007/978-1-4612-4380-9_37 (1972).
doi: 10.1007/978-1-4612-4380-9_37
Lin, D. Y., Wei, L. J. & Ying, Z. Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals. Biometrika 80, 557–572, https://doi.org/10.2307/2337177 (1993).
doi: 10.2307/2337177
Liu, Y. & De, A. Multiple Imputation by Fully Conditional Specification for Dealing with Missing Data in a Large Epidemiologic Study. Int J Stat Med Res 4, 287–295, https://doi.org/10.6000/1929-6029.2015.04.03.7 (2015).
doi: 10.6000/1929-6029.2015.04.03.7 pmcid: 4945131 pubmed: 4945131
Garcia, C. et al. Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006. Vet. Res. 42(73), 73, https://doi.org/10.1186/1297-9716-42-73 (2011).
doi: 10.1186/1297-9716-42-73 pmcid: 3129302 pubmed: 3129302
Petton, B., Pernet, F., Robert, R. & Boudry, P. Temperature influence on pathogen transmission and subsequent mortalities in juvenile Pacific oysters Crassostrea gigas. Aquaculture Env. Interact. 3, 257–273, https://doi.org/10.3354/aei00070 (2013).
doi: 10.3354/aei00070
Bruno, J. F. et al. Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks. PLOS Biology 5, e124, https://doi.org/10.1371/journal.pbio.0050124 (2007).
doi: 10.1371/journal.pbio.0050124 pmcid: 1865563 pubmed: 1865563
Ward, J. R., Kim, K. & Harvell, C. D. Temperature affects coral disease resistance and pathogen growth. Mar. Ecol. Prog. Ser. 329, 115–121, https://doi.org/10.3354/meps329115 (2007).
doi: 10.3354/meps329115
Eisenlord, M. E. et al. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philosophical Transactions of the Royal Society B: Biological Sciences 371 (2016).
Ben-Horin, T., Lenihan, H. S. & Lafferty, K. D. Variable intertidal temperature explains why disease endangers black abalone. Ecology 94, 161–168 (2013).
doi: 10.1890/11-2257.1
Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98, https://doi.org/10.1034/j.1600-0706.2000.880110.x (2000).
doi: 10.1034/j.1600-0706.2000.880110.x
Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
doi: 10.1016/0169-5347(96)10039-2
Smith, V. H., Jones, T. P. & Smith, M. S. Host nutrition and infectious disease: an ecological view. Front. Ecol. Environ. 3, 268–274, https://doi.org/10.1890/1540-9295(2005)003[0268:HNAIDA]2.0.CO;2 (2005).
doi: 10.1890/1540-9295(2005)003[0268:HNAIDA]2.0.CO;2
Hall, S. R., Simonis, J. L., Nisbet, R. M., Tessier, A. J. & Cáceres, C. E. Resource Ecology of Virulence in a Planktonic Host‐Parasite System: An Explanation Using Dynamic Energy Budgets. Am. Nat. 174, 149–162, https://doi.org/10.1086/600086 (2009).
doi: 10.1086/600086
Ayres, J. S. & Schneider, D. S. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS biology 7, e1000150 (2009).
doi: 10.1371/journal.pbio.1000150 pubmed: 2701602
Pernet, F., Tamayo, D., Fuhrmann, M. & Petton, B. Deciphering the effect of food availability, growth and host condition on disease susceptibility in a marine invertebrate. The Journal of Experimental Biology 222, jeb210534, https://doi.org/10.1242/jeb.210534 (2019).
doi: 10.1242/jeb.210534
Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515, https://doi.org/10.1111/1574-6941.12343 (2014).
doi: 10.1111/1574-6941.12343
Weinbauer, M. G. et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Microbial Ecol 57, 321–341, https://doi.org/10.3354/ame01363 (2009).
doi: 10.3354/ame01363
Bayne, B. L. In Developments in Aquaculture and Fisheries Science Volume 41 (ed Bayne Brian) 417–504 (Elsevier, 2017).
Amundrud, T. L. & Murray, A. G. Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. J. Fish Dis. 32, 27–44, https://doi.org/10.1111/j.1365-2761.2008.00980.x (2009).
doi: 10.1111/j.1365-2761.2008.00980.x
Salama, N. K. G. & Rabe, B. Developing models for investigating the environmental transmission of disease-causing agents within open-cage salmon aquaculture. Aquaculture Env. Interact. 4, 91–115 (2013).
doi: 10.3354/aei00077
Samain, J.-F. & McCombie, H. Summer mortality of Pacific oyster Crassostrea gigas, the Morest project 400 (2008).
Thomas, Y., Cassou, C., Gernez, P. & Pouvreau, S. Oysters as sentinels of climate variability and climate change in coastal ecosystems. Environmental Research Letters 13, 104009 (2018).
doi: 10.1088/1748-9326/aae254

Auteurs

Elodie Fleury (E)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France. elodie.fleury@ifremer.fr.

Pierrick Barbier (P)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.

Bruno Petton (B)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.

Julien Normand (J)

Ifremer, Laboratoire Environnement Ressources de Normandie, 14520, Port en Bessin, France.

Yoann Thomas (Y)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.

Stéphane Pouvreau (S)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.

Gaétan Daigle (G)

Département de Mathématiques et Statistique, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada.

Fabrice Pernet (F)

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzane, France.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH