Reference values of normal liver stiffness in healthy children by two methods: 2D shear wave and transient elastography.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 04 2020
29 04 2020
Historique:
received:
24
11
2019
accepted:
09
04
2020
entrez:
1
5
2020
pubmed:
1
5
2020
medline:
26
11
2020
Statut:
epublish
Résumé
TE and 2D-SWE are well-documented in studies performed on adults, but those on pediatric patients are limited. The aim of this study was to establish pediatric reference values for liver stiffness using two elastography methods: 2D-SWE and TE. We performed an observational study on 206 healthy children. All children underwent anamnesis, clinical exam, laboratory tests, US exam, TE and 2D-SWE for liver stiffness assessment. The mean liver stiffness value by 2D-SWE for all children was 3.72 ± 0.48 kPa. The mean values ranged between 3.603 ± 0.2678 kPa (3-5 years of age) and 3.774 ± 0.4038 kPa (9-11 years). The reference values varied between 4.1386 kPa (3-5 years of age) and 4.88 kPa (12-15 years). The mean liver stiffness value by TE was 3.797 ± 0.4859 kPa. The values ranged between 3.638 ± 0.4088 kPa (6-8 years of age) and 3.961 ± 0.5695 kPa (15-18 years). The cutoff values varied from 4.4064 kPa (3-5 years of age) to 5.1 kPa (15-18 years). We found a significant positive correlation between E Median values by TE and age [95% CI: 0.1160 to 0.3798, r = 0.2526, p = 0.0002]. Our findings revealed that the mean values of liver stiffness for all children on 2D-SWE and TE were almost identical, 3.72 ± 0.48 kPa versus 3.797 ± 0.4859 kPa.
Identifiants
pubmed: 32350349
doi: 10.1038/s41598-020-64320-w
pii: 10.1038/s41598-020-64320-w
pmc: PMC7190848
doi:
Types de publication
Clinical Trial
Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7213Références
Dhole, S. D., Kher, A. S., Ghildiyal, R. G. & Tambse, M. P. Chronic Liver Diseases in Children: Clinical Profile and Histology. J. Clin. Diagn. Res. JCDR 9, SC04–07 (2015).
pubmed: 26393179
Tahir, A., Malik, F. R., Ahmad, I. & Akhtar, P. Aetiological factors of chronic liver disease in children. J. Ayub Med. Coll. Abbottabad JAMC 23, 12–14 (2011).
pubmed: 24800332
Mărginean, C., Meliț, L., Ghiga, D. & Mărginean, M. Early inflammatory status related to pediatric obesity (STROBE compliant article). Front. Pediatr. 7 (2019).
Mărginean, C., Meliț, L., & Meliţ, L. E. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front. Pediatr. 6, 271 (2018).
doi: 10.3389/fped.2018.00271
Schwimmer, J. B. et al. Paediatric gastroenterology evaluation of overweight and obese children referred from primary care for suspected non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 38, 1267–1277 (2013).
doi: 10.1111/apt.12518
Kelly, A. S. et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation 128, 1689–1712 (2013).
doi: 10.1161/CIR.0b013e3182a5cfb3
Schwimmer, J. B. et al. Prevalence of fatty liver in children and adolescents. Pediatrics 118, 1388–1393 (2006).
doi: 10.1542/peds.2006-1212
Marginean, C. O. & Marginean, C. Elastographic assessment of liver fibrosis in children: A prospective single center experience. Eur. J. Radiol. 81, e870–874 (2012).
doi: 10.1016/j.ejrad.2012.04.014
Dietrich, C. F. et al. Current Knowledge in Ultrasound-Based Liver Elastography of Pediatric Patients. Appl. Sci. 8, 944 (2018).
doi: 10.3390/app8060944
Belei, O. et al. Comparison of three ultrasound based elastographic techniques in children and adolescents with chronic diffuse liver diseases. Med. Ultrason 18, 145–150 (2016).
doi: 10.11152/mu.2013.2066.182.bet
Gherlan, G. S. Liver ultrasound elastography: More than staging the disease. World J. Hepatol. 7, 1595–1600 (2015).
doi: 10.4254/wjh.v7.i12.1595
Friedrich-Rust, M. et al. Real-time tissue elastography versus FibroScan for noninvasive assessment of liver fibrosis in chronic liver disease. Ultraschall Med. Stuttg. Ger. 1980(30), 478–484 (2009).
doi: 10.1055/s-0028-1109488
Tsochatzis, E. A. et al. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J. Hepatol. 54, 650–659 (2011).
doi: 10.1016/j.jhep.2010.07.033
Nobili, V. et al. Accuracy and reproducibility of transient elastography for the diagnosis of fibrosis in pediatric nonalcoholic steatohepatitis. Hepatol. Baltim. Md 48, 442–448 (2008).
doi: 10.1002/hep.22376
Tutar, O. et al. Shear wave elastography in the evaluation of liver fibrosis in children. J. Pediatr. Gastroenterol. Nutr. 58, 750–755 (2014).
pubmed: 24552673
Ferraioli, G. et al. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatol. Baltim. Md 56, 2125–2133 (2012).
doi: 10.1002/hep.25936
Franchi-Abella, S. et al. Feasibility and Diagnostic Accuracy of Supersonic Shear-Wave Elastography for the Assessment of Liver Stiffness and Liver Fibrosis in Children: A Pilot Study of 96 Patients. Radiology 278, 554–562 (2016).
doi: 10.1148/radiol.2015142815
Behairy, B. E.-S., Sira, M. M., Zalata, K. R., Salama, E.-S. E. & Abd-Allah, M. A. Transient elastography compared to liver biopsy and morphometry for predicting fibrosis in pediatric chronic liver disease: Does etiology matter? World J. Gastroenterol. 22, 4238–4249 (2016).
doi: 10.3748/wjg.v22.i16.4238
Dillman, J. R. et al. Ultrasound shear wave speed measurements correlate with liver fibrosis in children. Pediatr. Radiol. 45, 1480–1488 (2015).
doi: 10.1007/s00247-015-3345-5
Noruegas, M. J., Matos, H., Gonçalves, I., Cipriano, M. A. & Sanches, C. Acoustic radiation force impulse-imaging in the assessment of liver fibrosis in children. Pediatr. Radiol. 42, 201–204 (2012).
doi: 10.1007/s00247-011-2257-2
Sporea, I., Gilja, O. H., Bota, S., Şirli, R. & Popescu, A. Liver elastography - an update. Med. Ultrason 15, 304–314 (2013).
doi: 10.11152/mu.2013.2066.154.isp23
Mauldin, F. W., Zhu, H. T., Behler, R. H., Nichols, T. C. & Gallippi, C. M. Robust principal component analysis and clustering methods for automated classification of tissue response to ARFI excitation. Ultrasound Med. Biol. 34, 309–325 (2008).
doi: 10.1016/j.ultrasmedbio.2007.07.019
Boursier, J. et al. Acoustic radiation force impulse: a new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur. J. Gastroenterol. Hepatol. 22, 1074–1084 (2010).
doi: 10.1097/MEG.0b013e328339e0a1
Ebinuma, H. et al. Evaluation of liver fibrosis by transient elastography using acoustic radiation force impulse: comparison with Fibroscan(®). J. Gastroenterol. 46, 1238–1248 (2011).
doi: 10.1007/s00535-011-0437-3
Bavu, E. et al. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med. Biol. 37, 1361–1373 (2011).
doi: 10.1016/j.ultrasmedbio.2011.05.016
Tokuhara, D., Cho, Y. & Shintaku, H. Transient Elastography-Based Liver Stiffness Age-Dependently Increases in Children. PloS One 11, e0166683 (2016).
doi: 10.1371/journal.pone.0166683
Goldschmidt, I. et al. Application and limitations of transient liver elastography in children. J. Pediatr. Gastroenterol. Nutr. 57, 109–113 (2013).
doi: 10.1097/MPG.0b013e31829206a0
Engelmann, G. et al. Feasibility study and control values of transient elastography in healthy children. Eur. J. Pediatr. 171, 353–360 (2012).
doi: 10.1007/s00431-011-1558-7
Hanquinet, S., Courvoisier, D., Kanavaki, A., Dhouib, A. & Anooshiravani, M. Acoustic radiation force impulse imaging-normal values of liver stiffness in healthy children. Pediatr. Radiol. 43, 539–544 (2013).
doi: 10.1007/s00247-012-2553-5
Matos, H., Trindade, A. & Noruegas, M. J. Acoustic radiation force impulse imaging in paediatric patients: normal liver values. J. Pediatr. Gastroenterol. Nutr. 59, 684–688 (2014).
doi: 10.1097/MPG.0000000000000539
Lee, M.-J., Kim, M.-J., Han, K. H. & Yoon, C. S. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging. Eur. J. Radiol. 82, e290–294 (2013).
doi: 10.1016/j.ejrad.2013.01.018
Shin, H. J., Kim, M.-J., Kim, H. Y., Roh, Y. H. & Lee, M.-J. Optimal Acquisition Number for Hepatic Shear Wave Velocity Measurements in Children. PloS One 11, e0168758 (2016).
doi: 10.1371/journal.pone.0168758
Galina, P. et al. Performance of two–dimensional ultrasound shear wave elastography: reference values of normal liver stiffness in children. Pediatr. Radiol. 49, 91–98 (2019).
doi: 10.1007/s00247-018-4244-3
Suh, C. H. et al. Determination of normal hepatic elasticity by using real-time shear-wave elastography. Radiology 271, 895–900 (2014).
doi: 10.1148/radiol.14131251
Son, C. Y. et al. Normal liver elasticity values using acoustic radiation force impulse imaging: a prospective study in healthy living liver and kidney donors. J. Gastroenterol. Hepatol 27, 130–136 (2012).
doi: 10.1111/j.1440-1746.2011.06814.x
Horster, S., Mandel, P., Zachoval, R. & Clevert, D. A. Comparing acoustic radiation force impulse imaging to transient elastography to assess liver stiffness in healthy volunteers with and without valsalva manoeuvre. Clin. Hemorheol. Microcirc 46, 159–168 (2010).
doi: 10.3233/CH-2010-1342
Sirli, R., Sporea, I., Tudora, A., Deleanu, A. & Popescu, A. Transient elastographic evaluation of subjects without known hepatic pathology: does age change the liver stiffness? J. Gastrointest. Liver Dis. JGLD 18, 57–60 (2009).
Corpechot, C., El Naggar, A. & Poupon, R. Gender and liver: is the liver stiffness weaker in weaker sex? Hepatol. Baltim. Md 44, 513–514 (2006).
doi: 10.1002/hep.21306
Konuş, O. L. et al. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am. J. Roentgenol 171, 1693–1698 (1998).
doi: 10.2214/ajr.171.6.9843315
Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 15, 155–163 (2016).
doi: 10.1016/j.jcm.2016.02.012