Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 Apr 2020
29 Apr 2020
Historique:
received:
27
11
2019
accepted:
16
04
2020
entrez:
1
5
2020
pubmed:
1
5
2020
medline:
1
5
2020
Statut:
epublish
Résumé
Flexible, light-weight and robust thermoelectric (TE) materials have attracted much attention to convert waste heat from low-grade heat sources, such as human body, to electricity. Carbon nanotube (CNT) yarn is one of the potential TE materials owing to its narrow band-gap energy, high charge carrier mobility, and excellent mechanical property, which is conducive for flexible and wearable devices. Herein, we propose a way to improve the power factor of CNT yarns fabricated from few-walled carbon nanotubes (FWCNTs) by two-step method; Joule-annealing in the vacuum followed by doping with p-type dopants, 2,3,5,6-tetrafluo-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Numerical calculations and experimental results explain that Joule-annealing and doping modulate the electronic states (Fermi energy level) of FWCNTs, resulting in extremely large thermoelectric power factor of 2250 µW m
Identifiants
pubmed: 32350391
doi: 10.1038/s41598-020-64435-0
pii: 10.1038/s41598-020-64435-0
pmc: PMC7190723
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7307Références
Du, Y., Xu, J., Paul, B. & Eklund, P. Flexible Thermoelectric Materials and Devices. Applied Materials Today 12, 366–388 (2018).
doi: 10.1016/j.apmt.2018.07.004
Cho, C. et al. Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomateirals. Adv. Energy Mater. 6(7), 1502168 (2016).
doi: 10.1002/aenm.201502168
Kyaw, A. K. K., Wong, G. D. H., Yemata, T. A. & Xu, J. Effective Ionic Seebeck Component Suppression in Mixed Ion-electron Conductor via Chemical Treatment. Organic Electronic 69, 7–12 (2019).
doi: 10.1016/j.orgel.2019.02.014
Ibáňez, M. et al. High-performance Thermoelectric Nanocomposites from Nanocrystal Building Blocks. Nat. Commun. 7, 10766 (2016).
pubmed: 26948987
pmcid: 4786643
doi: 10.1038/ncomms10766
Kim, H. S., Liu, W. & Ren, Z. The Bridge between the Materials and Devices of Thermoelectric Power Generators. Energy Environ. Sci. 10, 69–85 (2017).
doi: 10.1039/C6EE02488B
Lee, H. J. et al. Enhanced Thermoelectric Performance of PEDOT:PSS/PANI-CSA Polymer Multilayer Structures. Energy Environ. Sci. 9, 2806–2811 (2016).
doi: 10.1039/C5EE03063C
Myint, M. T. Z. et al. Simultaneous Improvement in Electrical Conductivity and Seebeck Coefficient of PEDOT:PSS by N
doi: 10.1039/C8RA06094K
Zheng, Y. et al. Designing Hybrid Architectures for Advanced Thermoelectric Materials. Mater. Chem. Front. 1, 2457–2473 (2017).
doi: 10.1039/C7QM00306D
An, C. J., Kang, Y. H., Song, H., Jeong, Y. & Cho, S. Y. High-Performance Flexible Thermoelectric Generator by Control of Electronic Structure of Directly Spun Carbon Nanotube Webs with Various Molecular Dopants. J. Mater. Chem. A. 5, 15631–15639 (2017).
doi: 10.1039/C7TA02509B
Hao, S., Dravid, V. P., Kanatzidis, M. G. & Wolverton, C. Computational Strategies for Design and Discovery of Nanostructured Thermoelectrics. npj Computional Materials 5, 58 (2019).
doi: 10.1038/s41524-019-0197-9
Blackburn, J. L., Ferguson, A. J., Cho, C. & Grunlan, J. C. Carbon Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 30(11), 1704386 (2018).
doi: 10.1002/adma.201704386
Ryan, J. D. et al. All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Appl. Energy Mater. 1(6), 2934–2941 (2018).
pubmed: 29963656
pmcid: 6020086
doi: 10.1021/acsaem.8b00617
Choi, J. et al. Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano 11(8), 7608–7614 (2017).
pubmed: 28700205
doi: 10.1021/acsnano.7b01771
pmcid: 28700205
Min, C., Shen, X., Shi, Z., Chen, L. & Xu, Z. The Electrical Properties and Conducting Mechanisms of Carbon Nanotube/Polymer Nanocomposites: A Review. Polymer-Plastics Technology and Engineering 49(12), 1172–1181 (2010).
doi: 10.1080/03602559.2010.496405
MacLeod, B. A. et al. Large n- and p-type Thermoelectric Power Factors from Doped Semiconducting Single-walled Carbon Nanotube Thin Films. Energy Environ. Sci. 10, 2168–2179 (2017).
doi: 10.1039/C7EE01130J
Kim, J.-Y., Mo, J.-H., Kang, Y. H., Cho, S. Y. & Jang, K.-S. Thermoelectric Fibers from Well-dispersed Carbon Nanotube/Poly (Vinyliedene Fluoride) Pastes for Fiber-based Thermoelectric Generators. Nanoscale 10, 19766–19773 (2018).
pubmed: 30327816
doi: 10.1039/C8NR06415F
pmcid: 30327816
Zheng et al. Carbon Nanotube Yarn based Thermoelectric Textiles for Harvesting Thermal Energy and Powering Electronics. J. Mater. Chem. A. https://doi.org/10.1039/C9TA12494B (2020).
Bubnova et al. Semi-metallic Polymers. Nature Materials 13, 190–194 (2014).
pubmed: 24317188
doi: 10.1038/nmat3824
pmcid: 24317188
Hopkins, A. R., Labatete-Goeppinger, A. C., Kim, H. & Katzman, H. A. Space Survivability of Carbon Nanotube Yarn Material in Low Earth Orbit. Carbon 107, 77–86 (2016).
doi: 10.1016/j.carbon.2016.05.040
Randeniya, L. K., Bendavid, A., Martin, P. J. & Tran, C.-D. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity. small 6(16), 1806 (2010).
pubmed: 20665629
doi: 10.1002/smll.201000493
pmcid: 20665629
Nakai et al. Giant Seebeck Coefficient in Semiconducting Single-wall Carbon Nanotube Film. Applied Physics Express 7(2) (2014).
Hung, N. T., Nugraha, A. R. T., Hasdeo, E. H., Dresselhaus, M. S. & Saito, R. Diameter Dependence of Thermoelectric Power of Semiconducting Carbon Nanotubes. Phys. Rev. B 92, 165426 (2015).
doi: 10.1103/PhysRevB.92.165426
Jorio, A., Saito, R., Dresselhaus, G., Dresselhaus, M. S. Electrons in sp
Thermoelectric Transport Properties for Electrons in Thermoelectric: Design and Materials, (ed. Lee, H.), 189-205, (Wiley Online Library, 2016).
Shi, X. & Sun, J. Dependence of Seebeck Coefficient on the Density of States in Organic Semiconductors. IEEE Electron Device Letters 38(12), 1728–1731 (2017).
doi: 10.1109/LED.2017.2765458
Rebelo, S. L. H. et al. Progress in the Raman Spectra Analysis of Covalently Functionalized Multiwalled Carbon Nanotube: Unraveling Disorder in Graphitic Materials. Phys. Chem. Chem. Phys. 18, 12784–12796 (2016).
pubmed: 27104221
doi: 10.1039/C5CP06519D
pmcid: 27104221
Niven, J. F. et al. Influence of Annealing on Thermal and Electrical Properties of Carbon Nanotube Yarns. Carbon 99, 485–490 (2016).
doi: 10.1016/j.carbon.2015.12.014
DiLeo, R. A., Landi, B. J. & Raffaelle, R. P. Purity Assessment of Multiwalled Carbon Nanotubes by Raman Spectroscopy. J. Appl. Phys. 101, 064307 (2007).
doi: 10.1063/1.2712152
Pierlot, A. P., Woodhead, A. L. & Church, J. S. Thermal Annealing Effects on Multi-walled Carbon Nanotube Yarns Probed by Raman Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117, 598–603 (2014).
doi: 10.1016/j.saa.2013.09.050
Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J. & Koziol, K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014).
doi: 10.1002/adfm.201303716
Wei, Y., Jiang, Liu, L. & Chen, Z. Fan. Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications. Nano Lett. 7(12), 3792–3797 (2007).
doi: 10.1021/nl072298y
Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications 143, 47–57 (2007).
doi: 10.1016/j.ssc.2007.03.052
Mahakul, P. C. & Mahanandia, P. Structural and Electrical Characteristics of Solution Processed P3HT-carbon Nanotube Composite. IOP Conf. Ser.:Mater. Sci. Eng. 178, 012024 (2017).
doi: 10.1088/1757-899X/178/1/012024
Grimm et al. Doping-Dependent G-mode Shifts of Small Diameter Semiconducting Single-walled Carbon Nanotubes. Carbon 118, 261–267 (2017).
doi: 10.1016/j.carbon.2017.03.040
Pang, L. S. K., Saxby, J. D. & Chatfield, S. P. Thermogravimetric Analysis of Carbon Nanotubes and Nanoparticles. J. Phys. Chem. 97(27), 6941–6942 (1993).
doi: 10.1021/j100129a001
Sundaram, R., Yamada, T., Hata, K. & Sekiguchi, A. Purifying Carbon Nanotube Wires by Vacuum Annealing. Materials Today:Proceedings 5(13), 27316–27326 (2018).
Giulianini, M. et al. Microscopic and Spectroscopic Investigation of Poly (3-hexylthiophene) Interaction with Carbon Nanotubes. Polymer 3(3), 1433–1446 (2011).
doi: 10.3390/polym3031433
Kumanek, B. & Janas, D. Thermal Conductivity of Carbon Nanotube Networks: A Review. J. Mater. Sci. 54, 7397–7427 (2019).
doi: 10.1007/s10853-019-03368-0
Hada, M. et al. One-minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Formation of Graphene at the Interface. ACS Appl. Energy Mater. 2(10), 7700–7708 (2019).
doi: 10.1021/acsaem.9b01736
Jakubinek, M. B. et al. Thermal and Electrical Conductivity of Array-spun Multi-walled Carbon Nanotube Yarns. Carbon 50, 244–248 (2012).
doi: 10.1016/j.carbon.2011.08.041
Yang, L., Chen, Z.-G., Dargusch, M. S. & Zou., J. High Performance Thermoelectric. Materials: Progress and Their Applications. Adv. Energy Mater. 8(6), 201701797 (2017).
Rowe, D. M. CRC Handbook of Thermoelectric. CRC Press, p. 407 (1995).
Shenogina, N., Shenogin, S., Xue, L. & Keblinski, P. On the Lack of Thermal Percolation in Carbon Nanotube Composites. Appl. Phys. Lett. 87, 133106 (2005).
doi: 10.1063/1.2056591
Kim, B-W., Pfeifer, S., Park, S-H., Bandaru, P. R. The Experimental Determination of the Onset of the Electrical and Thermal Conductivity Percolation Thresholds in Carbon Nanotube-polymer Composite. MRS Symp. Proc. 1312, https://doi.org/10.1557/opl.2011.114 (2011).
Inoue, H. et al. High-performance Structure of a Coil-Shaped Soft-Actuator Consisting of Polymer Threads and Carbon Nanotube Yarns. AIP Advances 8, 075316 (2018).
doi: 10.1063/1.5033487
Scholz, M. et al. Resistance-heating of Carbon Nanotube Yarns in Different Atmospheres. Carbon 133, 232–238 (2018).
doi: 10.1016/j.carbon.2018.03.022
Jang, E., Poosapati, A. & Madan, D. Enhanced Thermoelectric Properties of F4TCNQ Doped P3HT and Its Use as a Binder for Sb
doi: 10.1021/acsaem.7b00231
Jacobs, I. E. et al. Comparison of Solution-mixed and Sequentially Processed P3HT:F4TCNQ Films: Effect of Doping-induced Aggregation on Film Morphology. J. Mater. Chem. C 4, 3454-3466 (2016).