Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 Apr 2020
Historique:
received: 27 11 2019
accepted: 16 04 2020
entrez: 1 5 2020
pubmed: 1 5 2020
medline: 1 5 2020
Statut: epublish

Résumé

Flexible, light-weight and robust thermoelectric (TE) materials have attracted much attention to convert waste heat from low-grade heat sources, such as human body, to electricity. Carbon nanotube (CNT) yarn is one of the potential TE materials owing to its narrow band-gap energy, high charge carrier mobility, and excellent mechanical property, which is conducive for flexible and wearable devices. Herein, we propose a way to improve the power factor of CNT yarns fabricated from few-walled carbon nanotubes (FWCNTs) by two-step method; Joule-annealing in the vacuum followed by doping with p-type dopants, 2,3,5,6-tetrafluo-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Numerical calculations and experimental results explain that Joule-annealing and doping modulate the electronic states (Fermi energy level) of FWCNTs, resulting in extremely large thermoelectric power factor of 2250 µW m

Identifiants

pubmed: 32350391
doi: 10.1038/s41598-020-64435-0
pii: 10.1038/s41598-020-64435-0
pmc: PMC7190723
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7307

Références

Du, Y., Xu, J., Paul, B. & Eklund, P. Flexible Thermoelectric Materials and Devices. Applied Materials Today 12, 366–388 (2018).
doi: 10.1016/j.apmt.2018.07.004
Cho, C. et al. Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomateirals. Adv. Energy Mater. 6(7), 1502168 (2016).
doi: 10.1002/aenm.201502168
Kyaw, A. K. K., Wong, G. D. H., Yemata, T. A. & Xu, J. Effective Ionic Seebeck Component Suppression in Mixed Ion-electron Conductor via Chemical Treatment. Organic Electronic 69, 7–12 (2019).
doi: 10.1016/j.orgel.2019.02.014
Ibáňez, M. et al. High-performance Thermoelectric Nanocomposites from Nanocrystal Building Blocks. Nat. Commun. 7, 10766 (2016).
pubmed: 26948987 pmcid: 4786643 doi: 10.1038/ncomms10766
Kim, H. S., Liu, W. & Ren, Z. The Bridge between the Materials and Devices of Thermoelectric Power Generators. Energy Environ. Sci. 10, 69–85 (2017).
doi: 10.1039/C6EE02488B
Lee, H. J. et al. Enhanced Thermoelectric Performance of PEDOT:PSS/PANI-CSA Polymer Multilayer Structures. Energy Environ. Sci. 9, 2806–2811 (2016).
doi: 10.1039/C5EE03063C
Myint, M. T. Z. et al. Simultaneous Improvement in Electrical Conductivity and Seebeck Coefficient of PEDOT:PSS by N
doi: 10.1039/C8RA06094K
Zheng, Y. et al. Designing Hybrid Architectures for Advanced Thermoelectric Materials. Mater. Chem. Front. 1, 2457–2473 (2017).
doi: 10.1039/C7QM00306D
An, C. J., Kang, Y. H., Song, H., Jeong, Y. & Cho, S. Y. High-Performance Flexible Thermoelectric Generator by Control of Electronic Structure of Directly Spun Carbon Nanotube Webs with Various Molecular Dopants. J. Mater. Chem. A. 5, 15631–15639 (2017).
doi: 10.1039/C7TA02509B
Hao, S., Dravid, V. P., Kanatzidis, M. G. & Wolverton, C. Computational Strategies for Design and Discovery of Nanostructured Thermoelectrics. npj Computional Materials 5, 58 (2019).
doi: 10.1038/s41524-019-0197-9
Blackburn, J. L., Ferguson, A. J., Cho, C. & Grunlan, J. C. Carbon Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 30(11), 1704386 (2018).
doi: 10.1002/adma.201704386
Ryan, J. D. et al. All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Appl. Energy Mater. 1(6), 2934–2941 (2018).
pubmed: 29963656 pmcid: 6020086 doi: 10.1021/acsaem.8b00617
Choi, J. et al. Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano 11(8), 7608–7614 (2017).
pubmed: 28700205 doi: 10.1021/acsnano.7b01771 pmcid: 28700205
Min, C., Shen, X., Shi, Z., Chen, L. & Xu, Z. The Electrical Properties and Conducting Mechanisms of Carbon Nanotube/Polymer Nanocomposites: A Review. Polymer-Plastics Technology and Engineering 49(12), 1172–1181 (2010).
doi: 10.1080/03602559.2010.496405
MacLeod, B. A. et al. Large n- and p-type Thermoelectric Power Factors from Doped Semiconducting Single-walled Carbon Nanotube Thin Films. Energy Environ. Sci. 10, 2168–2179 (2017).
doi: 10.1039/C7EE01130J
Kim, J.-Y., Mo, J.-H., Kang, Y. H., Cho, S. Y. & Jang, K.-S. Thermoelectric Fibers from Well-dispersed Carbon Nanotube/Poly (Vinyliedene Fluoride) Pastes for Fiber-based Thermoelectric Generators. Nanoscale 10, 19766–19773 (2018).
pubmed: 30327816 doi: 10.1039/C8NR06415F pmcid: 30327816
Zheng et al. Carbon Nanotube Yarn based Thermoelectric Textiles for Harvesting Thermal Energy and Powering Electronics. J. Mater. Chem. A. https://doi.org/10.1039/C9TA12494B (2020).
Bubnova et al. Semi-metallic Polymers. Nature Materials 13, 190–194 (2014).
pubmed: 24317188 doi: 10.1038/nmat3824 pmcid: 24317188
Hopkins, A. R., Labatete-Goeppinger, A. C., Kim, H. & Katzman, H. A. Space Survivability of Carbon Nanotube Yarn Material in Low Earth Orbit. Carbon 107, 77–86 (2016).
doi: 10.1016/j.carbon.2016.05.040
Randeniya, L. K., Bendavid, A., Martin, P. J. & Tran, C.-D. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity. small 6(16), 1806 (2010).
pubmed: 20665629 doi: 10.1002/smll.201000493 pmcid: 20665629
Nakai et al. Giant Seebeck Coefficient in Semiconducting Single-wall Carbon Nanotube Film. Applied Physics Express 7(2) (2014).
Hung, N. T., Nugraha, A. R. T., Hasdeo, E. H., Dresselhaus, M. S. & Saito, R. Diameter Dependence of Thermoelectric Power of Semiconducting Carbon Nanotubes. Phys. Rev. B 92, 165426 (2015).
doi: 10.1103/PhysRevB.92.165426
Jorio, A., Saito, R., Dresselhaus, G., Dresselhaus, M. S. Electrons in sp
Thermoelectric Transport Properties for Electrons in Thermoelectric: Design and Materials, (ed. Lee, H.), 189-205, (Wiley Online Library, 2016).
Shi, X. & Sun, J. Dependence of Seebeck Coefficient on the Density of States in Organic Semiconductors. IEEE Electron Device Letters 38(12), 1728–1731 (2017).
doi: 10.1109/LED.2017.2765458
Rebelo, S. L. H. et al. Progress in the Raman Spectra Analysis of Covalently Functionalized Multiwalled Carbon Nanotube: Unraveling Disorder in Graphitic Materials. Phys. Chem. Chem. Phys. 18, 12784–12796 (2016).
pubmed: 27104221 doi: 10.1039/C5CP06519D pmcid: 27104221
Niven, J. F. et al. Influence of Annealing on Thermal and Electrical Properties of Carbon Nanotube Yarns. Carbon 99, 485–490 (2016).
doi: 10.1016/j.carbon.2015.12.014
DiLeo, R. A., Landi, B. J. & Raffaelle, R. P. Purity Assessment of Multiwalled Carbon Nanotubes by Raman Spectroscopy. J. Appl. Phys. 101, 064307 (2007).
doi: 10.1063/1.2712152
Pierlot, A. P., Woodhead, A. L. & Church, J. S. Thermal Annealing Effects on Multi-walled Carbon Nanotube Yarns Probed by Raman Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117, 598–603 (2014).
doi: 10.1016/j.saa.2013.09.050
Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J. & Koziol, K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014).
doi: 10.1002/adfm.201303716
Wei, Y., Jiang, Liu, L. & Chen, Z. Fan. Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications. Nano Lett. 7(12), 3792–3797 (2007).
doi: 10.1021/nl072298y
Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications 143, 47–57 (2007).
doi: 10.1016/j.ssc.2007.03.052
Mahakul, P. C. & Mahanandia, P. Structural and Electrical Characteristics of Solution Processed P3HT-carbon Nanotube Composite. IOP Conf. Ser.:Mater. Sci. Eng. 178, 012024 (2017).
doi: 10.1088/1757-899X/178/1/012024
Grimm et al. Doping-Dependent G-mode Shifts of Small Diameter Semiconducting Single-walled Carbon Nanotubes. Carbon 118, 261–267 (2017).
doi: 10.1016/j.carbon.2017.03.040
Pang, L. S. K., Saxby, J. D. & Chatfield, S. P. Thermogravimetric Analysis of Carbon Nanotubes and Nanoparticles. J. Phys. Chem. 97(27), 6941–6942 (1993).
doi: 10.1021/j100129a001
Sundaram, R., Yamada, T., Hata, K. & Sekiguchi, A. Purifying Carbon Nanotube Wires by Vacuum Annealing. Materials Today:Proceedings 5(13), 27316–27326 (2018).
Giulianini, M. et al. Microscopic and Spectroscopic Investigation of Poly (3-hexylthiophene) Interaction with Carbon Nanotubes. Polymer 3(3), 1433–1446 (2011).
doi: 10.3390/polym3031433
Kumanek, B. & Janas, D. Thermal Conductivity of Carbon Nanotube Networks: A Review. J. Mater. Sci. 54, 7397–7427 (2019).
doi: 10.1007/s10853-019-03368-0
Hada, M. et al. One-minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Formation of Graphene at the Interface. ACS Appl. Energy Mater. 2(10), 7700–7708 (2019).
doi: 10.1021/acsaem.9b01736
Jakubinek, M. B. et al. Thermal and Electrical Conductivity of Array-spun Multi-walled Carbon Nanotube Yarns. Carbon 50, 244–248 (2012).
doi: 10.1016/j.carbon.2011.08.041
Yang, L., Chen, Z.-G., Dargusch, M. S. & Zou., J. High Performance Thermoelectric. Materials: Progress and Their Applications. Adv. Energy Mater. 8(6), 201701797 (2017).
Rowe, D. M. CRC Handbook of Thermoelectric. CRC Press, p. 407 (1995).
Shenogina, N., Shenogin, S., Xue, L. & Keblinski, P. On the Lack of Thermal Percolation in Carbon Nanotube Composites. Appl. Phys. Lett. 87, 133106 (2005).
doi: 10.1063/1.2056591
Kim, B-W., Pfeifer, S., Park, S-H., Bandaru, P. R. The Experimental Determination of the Onset of the Electrical and Thermal Conductivity Percolation Thresholds in Carbon Nanotube-polymer Composite. MRS Symp. Proc. 1312, https://doi.org/10.1557/opl.2011.114 (2011).
Inoue, H. et al. High-performance Structure of a Coil-Shaped Soft-Actuator Consisting of Polymer Threads and Carbon Nanotube Yarns. AIP Advances 8, 075316 (2018).
doi: 10.1063/1.5033487
Scholz, M. et al. Resistance-heating of Carbon Nanotube Yarns in Different Atmospheres. Carbon 133, 232–238 (2018).
doi: 10.1016/j.carbon.2018.03.022
Jang, E., Poosapati, A. & Madan, D. Enhanced Thermoelectric Properties of F4TCNQ Doped P3HT and Its Use as a Binder for Sb
doi: 10.1021/acsaem.7b00231
Jacobs, I. E. et al. Comparison of Solution-mixed and Sequentially Processed P3HT:F4TCNQ Films: Effect of Doping-induced Aggregation on Film Morphology. J. Mater. Chem. C 4, 3454-3466 (2016).

Auteurs

May Thu Zar Myint (MTZ)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Faculty of Advanced Materials Engineering, University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin District, Mandalay Division, Mandalay, Myanmar.

Takeshi Nishikawa (T)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Kazuki Omoto (K)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Hirotaka Inoue (H)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Yoshifumi Yamashita (Y)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Aung Ko Ko Kyaw (AKK)

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. aung@sustech.edu.cn.

Yasuhiko Hayashi (Y)

Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. hayashi.yasuhiko@okayama-u.ac.jp.

Classifications MeSH