Comparative mitochondrial proteomics of Leishmania tropica clinical isolates resistant and sensitive to meglumine antimoniate.


Journal

Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 11 05 2019
accepted: 18 03 2020
pubmed: 1 5 2020
medline: 11 7 2020
entrez: 1 5 2020
Statut: ppublish

Résumé

Antimony is an important drug for the treatment of Leishmania parasite infections. In several countries, the emergence of drug-resistant Leishmania species has reduced the effectiveness of this drug. The mechanism of clinical drug resistance is unclear. The aim of this work was to identify mitochondrial proteome alterations associated with resistance against antimonial. A combination of cell fractionation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and Label-Free Quantification was used to characterize the mitochondrial protein composition of Leishmania tropica field isolates resistant and sensitive to meglumine antimoniate. LC-MS/MS analysis resulted in the identification of about 1200 proteins of the Leishmania tropica mitochondrial proteome. Various criteria were used to allocate about 40% proteins to mitochondrial proteome. Comparative quantitative proteomic analysis of the sensitive and the resistant strains showed proteins with differential abundance in resistance species are involved in TCA and aerobic respiration enzymes, stress proteins, lipid metabolism enzymes, and translation. These results showed that the mechanism of antimony resistance in Leishmania spp. field isolate may be associated with alteration in enzymes involved in mitochondrial pathways.

Identifiants

pubmed: 32350589
doi: 10.1007/s00436-020-06671-x
pii: 10.1007/s00436-020-06671-x
doi:

Substances chimiques

Antiprotozoal Agents 0
Mitochondrial Proteins 0
Proteome 0
Meglumine Antimoniate 75G4TW236W

Types de publication

Comparative Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1857-1871

Subventions

Organisme : Iran University of Medical Sciences (IUMS), Tehran, Iran
ID : Grant No.28625

Références

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Badirzadeh A, Mohebali M, Ghasemian M, Amini H, Zarei Z, Akhoundi B, Hajjaran H, Emdadi D, Molaei S, Kusha A, Alizadeh S (2013) Cutaneous and post kala-azar dermal leishmaniasis caused by Leishmania infantum in endemic areas of visceral leishmaniasis, northwestern Iran 2002–2011: a case series. Pathogens Glob Health 107(4):194–197
doi: 10.1179/2047773213Y.0000000097
Badirzadeh A et al (2017) The burden of leishmaniasis in Iran, acquired from the global burden of disease during 1990-2010. Asian Pac J Trop Dis 7(9):513–518
doi: 10.12980/apjtd.7.2017D6-452
Berg M et al (2015) Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother 59(4): 2242–2255
pubmed: 25645828 pmcid: 4356759 doi: 10.1128/AAC.04231-14
Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R (2011) Differential expression of proteins in antimony-susceptible and-resistant isolates of Leishmania donovani. Mol Biochem Parasitol 179(2):91–99
pubmed: 21736901 doi: 10.1016/j.molbiopara.2011.06.004
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254
pubmed: 942051 doi: 10.1016/0003-2697(76)90527-3 pmcid: 942051
Braly P, Simpson L, Kretzer F (1974) Isolation of kinetoplast-mitochondrial complexes from Leishmania tarentolae. J Eukaryot Microbiol 21(5):782–790
Brochu C, Haimeur A, Ouellette M (2004) The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 9(3):294–303
pubmed: 15544167 pmcid: 1065288 doi: 10.1379/CSC-15R1.1
Brotherton M-C et al (2013) Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One 8(11):e81899
pubmed: 24312377 pmcid: 3842243 doi: 10.1371/journal.pone.0081899
Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A, Ouellette M (2014) Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist 4(2):126–132
pubmed: 25057462 pmcid: 4095042 doi: 10.1016/j.ijpddr.2014.05.002
Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R (2011) Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin–susceptible–resistant Leishmania donovani. PLoS One 6(10):e26660
pubmed: 22046323 pmcid: 3203147 doi: 10.1371/journal.pone.0026660
Cottrell JS, London U (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567
pubmed: 10612281 doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372
pubmed: 19029910 doi: 10.1038/nbt.1511
Cruz-Bustos T, Ibarrola-Vannucci AK, Díaz-Lozano I, Ramírez JL, Osuna A (2018) Characterization and functionality of two members of the SPFH protein superfamily, prohibitin 1 and 2 in Leishmania major. Parasit Vectors 11(1):622
pubmed: 30514373 pmcid: 6278115 doi: 10.1186/s13071-018-3195-8
Das M, Saudagar P, Sundar S, Dubey VK (2013) Miltefosine-unresponsive Leishmania donovani has a greater ability than miltefosine-responsive L. donovani to resist reactive oxygen species. FEBS J 280(19):4807–4815
pubmed: 23890327 doi: 10.1111/febs.12449
Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2(5):325–345
pubmed: 12766230 doi: 10.1074/mcp.M300030-MCP200
Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2(2):287–295
pubmed: 17406588 doi: 10.1038/nprot.2006.478
Fuqua SA, Oesterreich S, Hilsenbeck SG, Von Hoff DD, Eckardt J, Osborne CK (1994) Heat shock proteins and drug resistance. Breast Cancer Res Treat 32(1):67–71
pubmed: 7819588 doi: 10.1007/BF00666207
Gazanion É, Fernández-Prada C, Papadopoulou B, Leprohon P, Ouellette M (2016) Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 113(21):E3012–E3021
pubmed: 27162331 pmcid: 4889358 doi: 10.1073/pnas.1520693113
Gonçalves RL, Barreto RFM, Polycarpo CR, Gadelha FR, Castro SL, Oliveira MF (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43(6):651–661
pubmed: 22081211 doi: 10.1007/s10863-011-9398-8
Guerra F, Arbini AA, Moro L (2017) Mitochondria and cancer chemoresistance. Biochim Biophys Acta Bioenerg 1858(8):686–699
pubmed: 28161329 doi: 10.1016/j.bbabio.2017.01.012
Hadighi R, Mohebali M, Boucher P, Hajjaran H, Khamesipour A, Ouellette M (2006) Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med 3(5):e162
pubmed: 16605301 pmcid: 1435779 doi: 10.1371/journal.pmed.0030162
Hajjaran H et al (2013) Molecular identification and polymorphism determination of cutaneous and visceral leishmaniasis agents isolated from human and animal hosts in Iran. Biomed Res Int 2013: 789326
Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1632(1–3):16–30
doi: 10.1016/S1388-1981(03)00059-3
Harder S, Bente M, Isermann K, Bruchhaus I (2006) Expression of a mitochondrial peroxiredoxin prevents programmed cell death in Leishmania donovani. Eukaryot Cell 5(5):861–870
pubmed: 16682463 pmcid: 1459684 doi: 10.1128/EC.5.5.861-870.2006
Ibrahim M, Gahoual R, Enkler L, Becker HD, Chicher J, Hammann P, François YN, Kuhn L, Leize-Wagner E (2016) Improvement of mitochondria extract from Saccharomyces cerevisiae characterization in shotgun proteomics using sheathless capillary electrophoresis coupled to tandem mass spectrometry. J Chromatogr Sci 54(4):653–663
pubmed: 26860395 pmcid: 4885408 doi: 10.1093/chromsci/bmw005
Jeddi F, Piarroux R, Mary C (2011) Antimony resistance in Leishmania, focusing on experimental research. J Trop Med 2011: 695382
Jeffers V et al (2017) TgPRELID, a mitochondrial protein linked to multidrug resistance in the parasite toxoplasma gondii. mSphere 2(1):e00229–e00216
pubmed: 28168222 pmcid: 5288566 doi: 10.1128/mSphere.00229-16
Jin L et al (2014) Down-regulation of Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines. Mol Cell Proteomics M113:033217
Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925
pubmed: 17952086 doi: 10.1038/nmeth1113
Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Saffari M, Raoofian R, Hajjaran H, Hadighi R, Khamesipour A, Rezaie S, Abedkhojasteh H, Heidari M (2013) Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol 135(2):344–349
pubmed: 23928349 doi: 10.1016/j.exppara.2013.07.018
Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519
pubmed: 10802706 doi: 10.1038/74994
Link AJ (1999) 2-D proteome analysis protocols, vol 112. Springer Science & Business Media, Berlin
Lira R, Sundar S, Makharia A, Kenney R, Gam A, Saraiva E, Sacks D (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180(2):564–567
pubmed: 10395884 doi: 10.1086/314896
Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2(8):e690
pubmed: 17668068 pmcid: 1930152 doi: 10.1371/journal.pone.0000690
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57(6):1690–1699
pubmed: 16135234 doi: 10.1111/j.1365-2958.2005.04782.x
Masoori L, Kheirandish F, Haghighi A, Mohebali M, Akhoundi B, Taghipour N, Gachkar L, Chegeni-Sharafi A, Moin-Vaziri V (2018) Molecular-based detection of Leishmania infantum in human blood samples in a new focus of visceral Leishmaniasis in Lorestan Province, Iran. J Arthropod Borne Dis 12(1):67–75
pubmed: 30018994 pmcid: 6046108
Mathur R, Das RP, Ranjan A, Shaha C (2015) Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J 29(10):4201–4213
pubmed: 26116701 doi: 10.1096/fj.15-272757
Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, Santiago AS, Pirovani CP, Silva-Pereira RA, Murta SM (2013) Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol 190(2):63–75
pubmed: 23831370 doi: 10.1016/j.molbiopara.2013.06.006
Messaritakis I, Christodoulou V, Mazeris A, Koutala E, Vlahou A, Papadogiorgaki S, Antoniou M (2013) Drug resistance in natural isolates of Leishmania donovani sl promastigotes is dependent of Pgp170 expression. PLoS One 8(6):e65467
pubmed: 23776486 pmcid: 3679129 doi: 10.1371/journal.pone.0065467
Michels P, Hannaert V, Bringaud F (2000) Metabolic aspects of glycosomes in Trypanosomatidae–new data and views. Parasitol Today 16(11):482–489
pubmed: 11063859 doi: 10.1016/S0169-4758(00)01810-X
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, Ebikeme C, Deramchia K, Gales L, Portais JC, Boshart M, Franconi JM, Bringaud F (2012) ATP synthesis-coupled and-uncoupled acetate production from acetyl-CoA by mitochondrial acetate: succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem 287(21):17186–17197
pubmed: 22474284 pmcid: 3366814 doi: 10.1074/jbc.M112.355404
Moreira W, Leprohon P, Ouellette M (2011) Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis 2(9):e201
pubmed: 21881603 pmcid: 3186901 doi: 10.1038/cddis.2011.83
Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23(4):149–158
pubmed: 17320480 doi: 10.1016/j.pt.2007.02.004
Opperdoes FR, Michels PA (2008) Complex I of Trypanosomatidae: does it exist? Trends Parasitol 24(7):310–317
pubmed: 18534909 doi: 10.1016/j.pt.2008.03.013
Palmfeldt J, Bross P (2017) Proteomics of human mitochondria. Mitochondrion 33:2–14
pubmed: 27444749 doi: 10.1016/j.mito.2016.07.006
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66(1):161–181
doi: 10.1111/j.1365-313X.2011.04516.x pubmed: 21443630
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9(2):434–450
pubmed: 19105172 pmcid: 2869593 doi: 10.1002/pmic.200800477
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052
pubmed: 29240765 pmcid: 29240765 doi: 10.1371/journal.pntd.0006052
Priest JW, Hajduk S (1992) Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1. J Biol Chem 267(28):20188–20195
pubmed: 1328195
Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, Pandey K, Ravidas V, Kumar M, de T, Singh D, Das P (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56(2):1031–1041
pubmed: 22123699 pmcid: 3264217 doi: 10.1128/AAC.00030-11
Rai S, Goel SK, Dwivedi UN, Sundar S, Goyal N (2013) Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One 8(9):e74862
pubmed: 24069359 pmcid: 3775726 doi: 10.1371/journal.pone.0074862
Rivière L et al (2009) Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proc Natl Acad Sci 106(31):12694–12699
pubmed: 19625628 doi: 10.1073/pnas.0903355106
Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK (2008) Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3, 3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 74(5):1292–1307
pubmed: 18703668 doi: 10.1124/mol.108.050161
Saitou M, Isonishi S, Hamada T, Kiyokawa T, Tachibana T, Ishikawa H, Yasuda M (2009) Mitochondrial ultrastructure-associated chemotherapy response in ovarian cancer. Oncol Rep 21(1):199–204
pubmed: 19082462
Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre J-L (2001) Antimonial-mediated DNA fragmentation inLeishmania infantum Amastigotes. Antimicrob Agents Chemother 45(7):2064–2069
pubmed: 11408224 pmcid: 90601 doi: 10.1128/AAC.45.7.2064-2069.2001
Shekari F, Baharvand H, Salekdeh GH (2014) Organellar proteomics of embryonic stem cells advances in protein chemistry and structural biology. 95. Elsevier, p 215-230
Singh S, Dubey VK (2016) Quantitative proteome analysis of Leishmania donovani under spermidine starvation. PLoS One 11(4):e0154262
pubmed: 27123864 pmcid: 4849798 doi: 10.1371/journal.pone.0154262
Sognier MA, Yin Z, Eberle RL, Sweet KM, Altenberg GA, Belli JA (1994) Sequestration of doxorubicin in vesicles in a multidrug-resistant cell line (LZ-100). Biochem Pharmacol 48(2):391–401
pubmed: 7914406 doi: 10.1016/0006-2952(94)90112-0
Soumya N, Kumar IS, Shivaprasad S, Gorakh LN, Dinesh N, Swamy KK, Singh S (2015) AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of ‘PX4GK’motif. Int J Biol Macromol 75:364–372
pubmed: 25660655 doi: 10.1016/j.ijbiomac.2015.01.042
Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH (2014) Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteome 99:123–137
doi: 10.1016/j.jprot.2014.01.015
Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278(27):25120–25132
pubmed: 12707265 doi: 10.1074/jbc.M301975200
Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2008) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 28(3):1007–1017
pubmed: 18039843 doi: 10.1128/MCB.00224-07
Sundar S, Goyal N (2007) Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 56(2):143–153
pubmed: 17244793 doi: 10.1099/jmm.0.46841-0
Sundar S, Pai K, Kumar R, Pathak-Tripathi K, Gam AA, Ray M, Kenney RT (2001) Resistance to treatment in Kala-azar: speciation of isolates from Northeast India. Am J Trop Med Hyg 65(3):193–196
pubmed: 11561703 doi: 10.4269/ajtmh.2001.65.193
Tasbihi M, Shekari F, Hajjaran H, Masoori L, Hadighi R (2019) Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 133:103542
pubmed: 31125686 doi: 10.1016/j.micpath.2019.103542
Tessarollo NG, Andrade JM, Moreira DS, Murta SMF (2015) Functional analysis of iron superoxide dismutase-a in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int 64(2):125–129
pubmed: 25449290 doi: 10.1016/j.parint.2014.11.001
t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC, Breitling R, Watson DG, Coombs GH, Decuypere S (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904
pubmed: 21152055 pmcid: 2994915 doi: 10.1371/journal.pntd.0000904
Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6(1):88–101
pubmed: 17050524 doi: 10.1074/mcp.M600319-MCP200
Vincent IM, Racine G, Légaré D, Ouellette M (2015) Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes 3(4):328–346
pubmed: 28248274 pmcid: 5217391 doi: 10.3390/proteomes3040328
Walker J et al (2012) Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 183(2):166–176
pubmed: 22449941 doi: 10.1016/j.molbiopara.2012.03.002
Wiśniewski JR, Duś K, Mann M (2013) Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins. Proteomics Clin Appl 7(3–4):225–233
pubmed: 23090905 doi: 10.1002/prca.201200046
Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, Wang Y, Soong L, Key P, Beverley SM, Zhang K (2009) Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 5(12):e1000692
pubmed: 20011126 pmcid: 2784226 doi: 10.1371/journal.ppat.1000692
Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4(3):e532
pubmed: 23470539 pmcid: 3613838 doi: 10.1038/cddis.2013.60

Auteurs

Minoo Tasbihi (M)

Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Faezeh Shekari (F)

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. faezehshekari@royaninstitute.org.
Department of Biology, University of Science and Culture, Tehran, Iran. faezehshekari@royaninstitute.org.

Homa Hajjaran (H)

Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Majid Khanmohammadi (M)

Department of Laboratory Science, Marand Branch, Islamic Azad University, Marand, Iran.

Ramtin Hadighi (R)

Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. rhadighi@gmail.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH