The effects of stride frequency manipulation on physiological and perceptual responses during backward and forward running with body weight support.


Journal

European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 21 10 2019
accepted: 19 04 2020
pubmed: 1 5 2020
medline: 4 5 2021
entrez: 1 5 2020
Statut: ppublish

Résumé

We investigated the influence of a change in stride frequency on physiological and perceptual responses during forward and backward running at different body weight support (BWS) levels. Participants ran forward and backward at 0% BWS, 20% BWS, and 50% BWS conditions on a lower body positive pressure treadmill. The stride frequency conditions consisted of forward and backward running at preferred stride frequency (PSF), PSF + 10%, and PSF-10%. We measured oxygen uptake ([Formula: see text]O [Formula: see text]O Manipulation of stride frequency during running may have a greater impact on physiological responses than on perceptual responses at a given speed, regardless of running direction and BWS. Individuals who need to increase their physiological demands during running may benefit from a 10% increase in stride frequency from the PSF, regardless of BWS and running direction.

Identifiants

pubmed: 32350595
doi: 10.1007/s00421-020-04380-y
pii: 10.1007/s00421-020-04380-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1519-1530

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP16K01663

Références

Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381
pubmed: 7154893 pmcid: 7154893
Beck ON, Taboga P, Grabowski AM (2017) Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations. J Appl Physiol 122:976–984. https://doi.org/10.1152/japplphysiol.00587.2016
doi: 10.1152/japplphysiol.00587.2016 pubmed: 28104752
Cavanagh PR, Williams KR (1982) The effect of stride length variation on oxygen uptake during distance running. Med Sci Sports Exerc 14:30–35
doi: 10.1249/00005768-198201000-00006
Chan ZYS, Zhang JH, Au IPH, An WW, Shum GLK, Ng GYF, Cheung RTH (2018) Gait retraining for the reduction of injury occurrence in novice distance runners: 1-year follow-up of a randomized controlled trial. Am J Sports Med 46:388–395. https://doi.org/10.1177/0363546517736277
doi: 10.1177/0363546517736277 pubmed: 29065279
Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman IM (1994) Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc 26:89–94
doi: 10.1249/00005768-199401000-00015
Grabowski AM, Kram R (2008) Effects of velocity and weight support on ground reaction forces and metabolic power during running. J Appl Biomech 24:288–297
doi: 10.1123/jab.24.3.288
Hamill J, Derrick TR, Holt KG (1995) Shock attenuation and stride frequency during running. Hum Mov Sci 14:45–60
doi: 10.1016/0167-9457(95)00004-C
Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MB (2011) Effects of step rate manipulation on joint mechanics during running. Med Sci Sports Exerc 43:296–302. https://doi.org/10.1249/MSS.0b013e3181ebedf4
doi: 10.1249/MSS.0b013e3181ebedf4 pubmed: 20581720 pmcid: 3022995
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374
doi: 10.1016/S1050-6411(00)00027-4
Hishlop HJ, Montgomery J (2007) Daniel's and worthingham's muscle testing: techniques of manual examination. Saunders/Elsevier, Amsterdam, pp 218, 224, 228–229, 235–236
Hobara H, Sato T, Sakaguchi M, Sato T, Nakazawa K (2012) Step frequency and lower extremity loading during running. Int J Sports Med 33:310–313. https://doi.org/10.1055/s-0031-1291232
doi: 10.1055/s-0031-1291232 pubmed: 22383130
Hoogkamer W, Meyns P, Duysens J (2014) Steps forward in understanding backward gait: from basic circuits to rehabilitation. Exerc Sport Sci Rev 42:23–29. https://doi.org/10.1249/JES.0000000000000000
doi: 10.1249/JES.0000000000000000 pubmed: 24188982
Kline JR, Raab S, Coast JR, Bounds RG, McNeill DK, de Heer HD (2015) Conversion table for running on lower body positive pressure treadmills. J Strength Cond Res 29:854–862. https://doi.org/10.1519/JSC.0000000000000658
doi: 10.1519/JSC.0000000000000658 pubmed: 25162650
Liebenberg J, Scharf J, Forrest D, Dufek JS, Masumoto K, Mercer JA (2011) Determination of muscle activity during running at reduced body weight. J Sports Sci 29:207–214. https://doi.org/10.1080/02640414.2010.534806
doi: 10.1080/02640414.2010.534806 pubmed: 21170806
Masumoto K, Bailey JP, Mercer JA (2015) Determining if muscle activity is related to preferred stride frequency during running in the water and on land. Eur J Appl Physiol 115:2691–2700. https://doi.org/10.1007/s00421-015-3234-5
doi: 10.1007/s00421-015-3234-5 pubmed: 26255289
Masumoto K, Galor A, Craig-Jones A, Mercer JA (2019) Metabolic costs during backward running with body weight support. Int J Sports Med 40:269–275. https://doi.org/10.1055/a-0806-7537
doi: 10.1055/a-0806-7537 pubmed: 30716782
Masumoto K, Joerger J, Mercer JA (2018) Influence of stride frequency manipulation on muscle activity during running with body weight support. Gait Posture 61:473–478. https://doi.org/10.1016/j.gaitpost.2018.02.010
doi: 10.1016/j.gaitpost.2018.02.010 pubmed: 29494820
Masumoto K, Soucy MT, Bailey JP, Mercer JA (2017) Muscle activity during backward and forward running with body weight support. Hum Mov Sci 55:276–286. https://doi.org/10.1016/j.humov.2017.08.015
doi: 10.1016/j.humov.2017.08.015 pubmed: 28886464
McNeill DK, de Heer HD, Williams CP, Coast JR (2015) Metabolic accommodation to running on a body weight-supported treadmill. Eur J Appl Physiol 115:905–910. https://doi.org/10.1007/s00421-014-3071-y
doi: 10.1007/s00421-014-3071-y pubmed: 25488671
Mercer JA, Applequist BC, Masumoto K (2013) Muscle activity while running at 20%–50% of normal body weight. Res Sports Med 21:217–228. https://doi.org/10.1080/15438627.2013.792084
doi: 10.1080/15438627.2013.792084 pubmed: 23777377
Mercer JA, Dolgan J, Griffin J, Bestwick A (2008) The physiological importance of preferred stride frequency during running at different speeds. J Exerc Physiol 11:26–32
Messier SP, Martin DF, Mihalko SL, Ip E, DeVita P, Cannon DW, Love M, Beringer D, Saldana S, Fellin RE, Seay JF (2018) A 2-year prospective cohort study of overuse running injuries: the runners and injury longitudinal study (TRAILS). Am J Sports Med 46:2211–2221. https://doi.org/10.1177/0363546518773755
doi: 10.1177/0363546518773755 pubmed: 29791183
Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS (2006) Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc 38:323–328. https://doi.org/10.1249/01.mss.0000183477.75808.92
doi: 10.1249/01.mss.0000183477.75808.92 pubmed: 16531902
Ordway JD, Laubach LL, Vanderburgh PM, Jackson KJ (2016) The effects of backwards running training on forward running economy in trained males. J Strength Cond Res 30:763–767. https://doi.org/10.1519/JSC.0000000000001153
doi: 10.1519/JSC.0000000000001153 pubmed: 26332781
Raffalt PC, Hovgaard-Hansen L, Jensen BR (2013) Running on a lower-body positive pressure treadmill: VO
doi: 10.1080/02701367.2013.784721 pubmed: 23930547
Snyder KL, Farley CT (2011) Energetically optimal stride frequency in running: the effects of incline and decline. J Exp Biol 214:2089–2095. https://doi.org/10.1242/jeb.053157
doi: 10.1242/jeb.053157 pubmed: 21613526
Terblanche E, Page C, Kroff J, Venter RE (2005) The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. Int J Sports Med 26:214–219. https://doi.org/10.1055/s-2004-820997
doi: 10.1055/s-2004-820997 pubmed: 15776337
Threlkeld AJ, Horn TS, Wojtowicz G, Rooney JG, Shapiro R (1989) Kinematics, ground reaction force, and muscle balance produced by backward running. J Orthop Sports Phys Ther 11:56–63
doi: 10.2519/jospt.1989.11.2.56
Williford HN, Olson MS, Gauger S, Duey WJ, Blessing DL (1998) Cardiovascular and metabolic costs of forward, backward, and lateral motion. Med Sci Sports Exerc 30:1419–1423
pubmed: 9741611

Auteurs

Kenji Masumoto (K)

Graduate School of Human-Environment Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan. masumoto@ihs.kyushu-u.ac.jp.

Daniel Denton (D)

Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.

Andrew Craig-Jones (A)

Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.

John A Mercer (JA)

Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH