Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation.
Bifidobacterium breve
Colitis
Conjugated linoleic acid
Gut microbiota
Intestinal tract barrier
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
08
12
2019
accepted:
14
04
2020
pubmed:
1
5
2020
medline:
24
6
2021
entrez:
1
5
2020
Statut:
ppublish
Résumé
The study aimed to investigate the discrepancy and potential mechanisms of different CLA-producing B. breve on dextran sulphate sodium (DSS)-induced colitis. Colitis was induced in C57BL/6 J mice using DSS. Disease activity index (DAI), histopathological changes, epithelial barrier integrity and epithelial apoptosis were determined. Gut microbiota were gauged to evaluate the systemic effects of CLA-producing B. breve. Oral administration of different B. breve showed different effects, in which B. breve M1 and B. breve M2 alleviated the inflammation induced by DSS as well as significantly increased the concentration of mucin2 (MUC2) and goblet cells, but neither B. breve M3 nor B. breve M4 had those protective effects. Meanwhile, B. breve M1 and B. breve M2 treatments significantly up-regulated the tight junction (TJ) proteins and ameliorated the epithelial apoptosis lead by DSS challenge. Moreover, inflammatory cytokines (TNF-α, IL-6) were modulated by B. breve M1 and B. breve M2, neither B. breve M3 nor B. breve M4. Furthermore, B. breve M1 and B. breve M2 reduced the abundance of Bacteroides and increased the abundance of Odoribacter, then rebalanced the damaged gut microbiota. Colonic CLA concentrations in mice fed with B. breve M1, B. breve M2, B. breve M3 and B. breve M4 decreased successively, which showed significant positive correlation with the effectiveness of relieving colitis. Bifidobacterium breve M1 and B. breve M2 alleviated DSS-induced colitis by producing CLA, inhibiting the inflammatory cytokines, maintaining of the intestinal epithelial barrier and regulating the gut microbiota.
Identifiants
pubmed: 32350653
doi: 10.1007/s00394-020-02252-x
pii: 10.1007/s00394-020-02252-x
doi:
Substances chimiques
Dextran Sulfate
9042-14-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
369-387Subventions
Organisme : National Natural Science Foundation of China
ID : Nos. 31801521
Organisme : National Natural Science Foundation of China
ID : Nos.31722041
Organisme : National Natural Science Foundation of China
ID : Nos.31820103010
Organisme : National First-Class Discipline Program of Food Science and Technology
ID : JUFSTR20180102
Organisme : Postgraduate Research & Practice Innovation Program of Jiangsu Province
ID : KYCX19_1829
Organisme : Wuxi Young Talent Foundation
ID : QNRC075
Références
Molodecky NA, Soon S, Rabi DM, Ghali WA, Ferris M, Chernoff G et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54
pubmed: 22001864
Sairenji T, Collins KL, Evans DV (2017) An update on inflammatory bowel disease. Prim Care 44:673–692
pubmed: 29132528
Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12:S3–S9
pubmed: 16378007
Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF (2017) Ulcerative colitis. Lancet 389:1756–1770
Green JR, Lobo AJ, Holdsworth CD, Leicester RJ, Gibson JA, Kerr GD et al (1998) Balsalazide is more effective and better tolerated than mesalamine in the treatment of acute ulcerative colitis. Gastroenterology 114:15–22
pubmed: 9428213
Pearson C (2004) Inflammatory bowel disease. Clin Adv Nutr 100:86–90
Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6:6–31
Bassaganya-Riera J, Hontecillas R (2006) CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr 25:454–465
pubmed: 16698153
Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F (2004) Hontecillas, Activation of PPAR [gamma] and [delta] by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791
pubmed: 15362034
Clément L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S et al (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409
pubmed: 12235171
Kelley DS, Bartolini GL, Warren JM, Simon VA, Mackey BE, Erickson KL (2004) Contrasting effects of t10, c12- and c9, t11-conjugated linoleic acid isomers on the fatty acid profiles of mouse liver lipids. Lipids 39:135–141
pubmed: 15134140
Jaudszus A, Moeckel P, Hamelmann E, Jahreis G (2010) Trans-10, cis-12-CLA-caused lipodystrophy is associated with profound changes of fatty acid profiles of liver, white adipose tissue and erythrocytes in mice: possible link to tissue-specific alterations of fatty acid desaturation. Ann Nutr Metab 57:103–111
pubmed: 20924169
Takahashi Y, Kushiro M, Shinohara K, Ide T (2003) Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. BBA-Mol Cell Biol L 1631:265–273
Rasooly R, Kelley DS, Greg J, Mackey BE, Belury MA, Belury MA et al (2007) Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liver. Brit J Nutr 97:58–66
pubmed: 17217560
Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145
pubmed: 12492934
Chung SH, Kim IH, Park HG, Kang HS, Yoon CS, Jeong HY et al (2008) Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation. J Agric Food Chem 56:3311–3316
pubmed: 18410112
Kepler CR, Tucker WP, Tove SB (1971) Biohydrogenation of unsaturated fatty acids. V. Stereospecificity of proton addition and mechanism of action of linoleic acid Δ12-cis, Δ11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 246:2765–2771
pubmed: 5554292
Raimondi S, Amaretti A, Leonardi A, Quartieri A, Gozzoli C, Rossi M (2016) Conjugated linoleic acid production by bifidobacteria: screening, kinetic, and composition. Biomed Res Int 2016:1–9
Wang J, Chen H, Yang B, Gu Z, Zhang H, Chen W et al (2016) Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Adv 6:14457–14464
Yang B, Chen H, Gao H, Wang J, Stanton C, Ross RP et al (2018) Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation. J Funct Foods 49:61–72
Yang B, Chen H, Gu Z, Tian F, Ross RP, Stanton C et al (2014) Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food-derived lactobacilli. J Appl Microbiol 117:430–439
pubmed: 24750362
pmcid: 4306591
Fang Z, Li L, Liu X, Lu W, Zhao J, Zhang H et al (2019) Strain-specific ameliorating effect of Bifidobacterium longum on atopic dermatitis in mice. J Funct Foods 60:103426
Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N et al (2009) Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol-Gastr L 296:G1140–G1149
Murthy SNS, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ (1993) Treatment of dextran sulfate sodium-induced murine colitis by intra colonic cyclosporine. Digest Dis Sci 38:1722–1734
pubmed: 8359087
Rees V (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391
pubmed: 9844047
Steedman HF (1950) Alcian blue 8GS: a new stain for mucin. J Cell Sci 91:477–479
Wu H, Ye L, Lu X, Xie S, Yang Q, Yu Q (2018) Lactobacillus acidophilus alleviated Salmonella-induced goblet cells loss and colitis by Notch pathway. Mol Nutr Food Res 62:1800552
Tan GX, Wang XN, Tang YY, Cen WJ, Li ZH, Wang GC et al (2019) PP22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, down regulating STAT3 signaling, and modulating the MAPK pathway. J Cell Physiol 234:2618–2630
pubmed: 30191969
Classics Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
Schwenke DC (2002) Alpha-tocopherol protects against diet induced atherosclerosis in New Zealand white rabbits. J Lipid Res 43:1927–1938
pubmed: 12401892
Yang Q, Wang S, Ji Y, Chen H, Zhang H, Chen W et al (2017) Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids Health Dis 16:10
pubmed: 28095863
pmcid: 5240384
Yan S, Yang B, Zhao J, Zhao J, Stanton C, Ross RP et al (2019) A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct 10:1595–1608
pubmed: 30806428
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:15–25
pubmed: 24510619
Zwolinska-Wcislo M, Brzozowski T, Ptak-Belowska A, Targosz A, Urbanczyk K, Kwiecien S et al (2011) Nitric oxide-releasing aspirin but not conventional aspirin improves healing of experimental colitis. World J Gastroenterol 17:4076–4089
pubmed: 22039321
pmcid: 3203358
Xing J, You C, Dong K, Sun J, You H, Dong Y et al (2013) Ameliorative effects of 3,4-oxo-isopropylidene-shikimic acid on experimental colitis and their mechanisms in rats. Int Immunopharmacol 15:524–531
pubmed: 23434856
Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153
pubmed: 24566914
Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330
pubmed: 20703838
pmcid: 2933006
Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbio 15:57–62
Van Klinken BJ, Van der Wal JW, Einerhand AW, Buller HA, Dekker J (1999) Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut 44:387–393
pubmed: 10026326
pmcid: 1727426
Theodoratou E, Campbell H, Ventham NT, Kolarich D, Pucic-Bakovic M, Zoldos V et al (2014) The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol 11:588–600
pubmed: 24912389
Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ et al (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116:301–309
pubmed: 9922310
Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309
pubmed: 20936941
pmcid: 4655434
Ivanov AI, Naydenov NG (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int Rev Cell Mol Biol 303:27–99
pubmed: 23445808
Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524
pubmed: 20581053
pmcid: 2913378
Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J et al (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE 6:e27961
pubmed: 22132181
pmcid: 3222668
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A et al (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS ONE 10:e0134050
pubmed: 26218526
pmcid: 4517903
Wang G, Xu Q, Jin X, Hang F, Liu Z, Zhao J et al (2018) Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis. J Funct Foods 47:107–115
Liu HY, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE et al (2015) Effects of lactobacillus johnsonii and lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol Rep 3:e12355
pubmed: 25847917
pmcid: 4425961
Fei L, Xu K (2016) Zhikang Capsule ameliorates dextran sodium sulfate-induced colitis by inhibition of inflammation, apoptosis, oxidative stress and MyD88-dependent TLR4 signaling pathway. J Ethnopharmacol 192:236–247
pubmed: 27452656
Hegazy SK (2010) Effect of probiotics on pro-inflammatory cytokines and NF-κB activation in ulcerative colitis. World J Gastroenterol 16:4145–4151
pubmed: 20806430
pmcid: 2932917
Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49:1215–1228
Lee IA, Bae EA, Lee JH, Lee H, Ahn YT, Huh CS et al (2010) Bifidobacterium longum HY8004 attenuates TNBS-induced colitis by inhibiting lipid peroxidation in mice. Inflamm Res 59:359–368
pubmed: 19882302
Jin S, Zhao D, Cai C, Song D, Shen J, Xu A et al (2017) Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification. Sci Rep 7:43662
pubmed: 28272549
pmcid: 5341569
Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA et al (2017) The gut microbiota of healthy Chilean subjects reveals a high abundance of the phylum Verrucomicrobia. Front Microbiol 8:1–11
Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST et al (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocr Metab 103:1502–1511
pubmed: 29370410
Gomez-Arango LF, Barrett H, McIntyre D, Callaway LK, Morrison M, Nitert MD (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–977
pubmed: 27528065
Chen G, Ran X, Li B, Li Y, He D, Huang B et al (2018) Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30:317–325
pubmed: 29627390
pmcid: 5952406
Chen L, Sun M, Wu W, Yang W, Huang X, Xiao Y (2019) Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm Bowel Dis 25:1450–1461
pubmed: 30918945
pmcid: 6701512
Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada N et al (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci 101:14919–14924
pubmed: 15466707
Setoyama H, Imaoka A, Ishikawa H, Umesaki Y (2003) Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 5:115–122
pubmed: 12650769
Bamba T, Matsuda H, Endo M, Fujiyama Y (1995) The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol 30:45–47
pubmed: 8563888
Hudcovic T, Kozakova H, Kolinska J, Stepankova R, Hrncir T, Tlaskalova- Hogenova H (2009) Monocolonization with Bacteroides ovatus protects immu-nodeficient SCID mice from mortality in chronic intestinal inflammation caused by long-lasting dextran sodium sulfate treatment. Physiol Res 58:101–110
pubmed: 18198984
Borniquel S, Jadert C, Lundberg JO (2012) Dietary conjugated linoleic acid activates PPARgamma and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis. J Nutr 142:2135–2140
pubmed: 23077197
Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R et al (2012) Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitis. PLoS ONE 7:e31238
pubmed: 22363592
pmcid: 3283634
Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J et al (2019) Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem 67:13282–13298