Wnt/
Animals
Behavior, Animal
Brain-Derived Neurotrophic Factor
/ metabolism
HIV Envelope Protein gp120
/ administration & dosage
Hyperalgesia
/ complications
Injections, Spinal
Mice, Inbred ICR
Microglia
/ metabolism
Models, Biological
Neuralgia
/ complications
Nociception
Receptor, trkB
/ metabolism
Receptors, Nerve Growth Factor
/ metabolism
Spinal Cord
/ pathology
Up-Regulation
Wnt Signaling Pathway
HIV-associated neuropathic pain
Wing-Int
brain-derived neurotrophic factor
microglia
spinal cord
Journal
Molecular pain
ISSN: 1744-8069
Titre abrégé: Mol Pain
Pays: United States
ID NLM: 101242662
Informations de publication
Date de publication:
Historique:
entrez:
2
5
2020
pubmed:
2
5
2020
medline:
4
6
2021
Statut:
ppublish
Résumé
HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and β-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/β-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/β-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/β-catenin/BDNF signaling axis as a target for HNP treatment.
Identifiants
pubmed: 32354292
doi: 10.1177/1744806920922100
pmc: PMC7227158
doi:
Substances chimiques
Brain-Derived Neurotrophic Factor
0
HIV Envelope Protein gp120
0
Receptors, Nerve Growth Factor
0
Ngfr protein, mouse
0
Receptor, trkB
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1744806920922100Références
Int J Mol Sci. 2009 Mar;10(3):1045-1063
pubmed: 19399237
J Mol Neurosci. 2017 Jun;62(2):199-208
pubmed: 28560687
AIDS Behav. 2018 May;22(5):1584-1595
pubmed: 28710709
Brain. 2018 Apr 1;141(4):1028-1039
pubmed: 29394316
Anesth Analg. 2019 Jul;129(1):276-286
pubmed: 30507840
J Neurovirol. 2017 Aug;23(4):511-519
pubmed: 28560631
Mol Brain. 2012 Jan 04;5:1
pubmed: 22217152
J Clin Invest. 2013 May;123(5):2268-86
pubmed: 23585476
J Neurosci. 2001 Apr 15;21(8):2808-19
pubmed: 11306633
Science. 2016 Nov 4;354(6312):572-577
pubmed: 27811267
Am J Pathol. 1986 Sep;124(3):537-58
pubmed: 2876640
Brain Res. 2014 Oct 24;1586:162-72
pubmed: 25223903
Ann Neurol. 2014 Jun;75(6):837-50
pubmed: 24633867
Crit Rev Neurobiol. 1990;5(4):313-62
pubmed: 2204485
Exp Cell Res. 2017 Dec 1;361(1):155-162
pubmed: 29054488
Nat Rev Neurosci. 2018 Mar;19(3):138-152
pubmed: 29416128
Crit Rev Neurobiol. 1996;10(1):57-67
pubmed: 8853954
Pain. 2015 Jul;156(7):1311-1319
pubmed: 25840108
J Neurosci. 2006 Oct 4;26(40):10299-304
pubmed: 17021185
Mol Brain. 2017 Aug 29;10(1):40
pubmed: 28851400
PLoS One. 2011;6(10):e25994
pubmed: 22016798
J Biol Chem. 2013 May 10;288(19):13610-9
pubmed: 23539626
Neurosci Bull. 2018 Feb;34(1):98-108
pubmed: 28585113
FASEB J. 2010 Nov;24(11):4343-53
pubmed: 20628092
Cancers (Basel). 2016 Aug 26;8(9):
pubmed: 27571105
Pain. 2007 Dec 15;133(1-3):47-63
pubmed: 17433546
Exp Neurol. 2010 Apr;222(2):256-66
pubmed: 20079352
Brain Pathol. 1996 Jan;6(1):1-15
pubmed: 8866743
J Biol Chem. 2018 Oct 5;293(40):15641-15651
pubmed: 30139740
J Neurosci. 2012 Jul 11;32(28):9477-84
pubmed: 22787033
J Neurosci. 2009 Apr 29;29(17):5508-15
pubmed: 19403818
Pain. 1999 Mar;80(1-2):265-72
pubmed: 10204739
Pain. 2017 Sep;158(9):1666-1677
pubmed: 28722693
Nat Commun. 2014 Oct 30;5:5331
pubmed: 25354791
Science. 2008 Nov 21;322(5905):1247-50
pubmed: 19023080
Nature. 2005 Dec 15;438(7070):1017-21
pubmed: 16355225
Pain. 2017 Sep;158(9):1792-1801
pubmed: 28746078
Neuroreport. 2012 Feb 15;23(3):189-94
pubmed: 22198686
Biochem Pharmacol. 2017 Sep 15;140:115-123
pubmed: 28551099
Prog Neurobiol. 2017 Oct;157:117-132
pubmed: 27084354
Pain Physician. 2011 Nov-Dec;14(6):E505-24
pubmed: 22086103
Neuron. 1998 Apr;20(4):709-26
pubmed: 9581763
Neural Plast. 2016;2016:9857201
pubmed: 27721996
J Neurosci. 2012 Aug 8;32(32):10833-40
pubmed: 22875918
J Neuropathol Exp Neurol. 1992 Mar;51(2):177-85
pubmed: 1538241
Mol Pain. 2012 Jun 19;8:47
pubmed: 22713358
Brain Behav Immun. 2007 Jul;21(5):711-8
pubmed: 16989980
Neuropathol Appl Neurobiol. 1998 Dec;24(6):453-60
pubmed: 9888155
J Neurosci. 2004 Jun 30;24(26):6021-7
pubmed: 15229249
Nat Commun. 2016 Jun 28;7:12029
pubmed: 27349690
Front Microbiol. 2016 Feb 10;7:103
pubmed: 26903982
Brain Behav Immun. 2011 Feb;25(2):322-34
pubmed: 20933591
Cell Physiol Biochem. 2018;51(6):2604-2615
pubmed: 30562750
J Neuroimmune Pharmacol. 2013 Sep;8(4):956-64
pubmed: 23737037
Pain Med. 2018 Jul 1;19(7):1445-1450
pubmed: 29024980
Cell. 2017 Jun 1;169(6):985-999
pubmed: 28575679