Joint Iterative Fast Projection Matching for Fully Automatic Marker-free Alignment of Nano-tomography Reconstructions.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 04 2020
Historique:
received: 12 11 2019
accepted: 24 01 2020
entrez: 2 5 2020
pubmed: 2 5 2020
medline: 2 5 2020
Statut: epublish

Résumé

Highly accurate, fully automatic marker-free image alignment plays an important role in nano-tomographic reconstruction, particularly in cases where the spatial resolution of the tomographic system is on the nanometer scale. However, highly accurate marker-free methods such as the projection matching method are computationally complex and time-consuming. Achieving alignment accuracy with reduced computational complexity remains a challenging problem. In this study, we propose an efficient method to achieve marker-free fully automatic alignment. Our method implements three main alignment procedures. First, the frequency-domain common line alignment method is used to correct the in-plane rotational errors of each projection. Second, real-space common line alignment method is used to correct the vertical errors of the projections. Finally, a single layer joint-iterative reconstruction and re-projection method is used to correct the horizontal projection errors. This combined alignment approach significantly reduces the computational complexity of the classical projection matching method, and increases the rate of convergence towards determining the accurate alignment. The total processing time can be reduced by up to 4 orders of magnitude as compared to the classical projection matching method. This suggests that the algorithm can be used to process image alignment of nano-tomographic reconstructions on a conventional personal computer in a reasonable time-frame.

Identifiants

pubmed: 32355164
doi: 10.1038/s41598-020-62949-1
pii: 10.1038/s41598-020-62949-1
pmc: PMC7192921
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7330

Références

Brandt, S., Heikkonen, J. & Engelhardt, P. Automatic alignment of transmission electron microscope tilt series without ducial markers. Journal of Structural Biology 136, 201–213 (2001).
doi: 10.1006/jsbi.2001.4443
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization three-dimensional image data using IMOD. Journal of Structural Biology 116, 71–76 (1996).
doi: 10.1006/jsbi.1996.0013
Sorzano, C. O. S. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. Journal of Structural Biology 148, 194–204 (2004).
doi: 10.1016/j.jsb.2004.06.006
Zheng, S. Q. et al. UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. Journal of Structural Biology 157, 138–147 (2007).
doi: 10.1016/j.jsb.2006.06.005
Cheng, C.-C., Chien, C.-C., Chen, H.-H., Hwu, Y. & Ching, Y.-T. Image Alignment for Tomography Reconstruction from Synchrotron X-Ray Microscopic Images. PLOS one 9, e84675 (2014).
doi: 10.1371/journal.pone.0084675
Wang, J. et al. Automated markerless full field hard x-ray microscopic tomography at sub-50nm 3-dimension spatial resolution. Applied Physics Letters 100, 143107 (2012).
doi: 10.1063/1.3701579
Guckenberger, R. Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy. Ultramicroscopy 9, 167–173 (1982).
doi: 10.1016/0304-3991(82)90239-X
Frank, J. & McEwen, B. F. Alignment by cross-correlation. Electron Tomography; Three Dimensional Imaging with the Transmission Electron Microscope 205–213 (Plenum Press, 1992).
Brandt, S. S. & Ziese, U. Automatic TEM image alignment by Trifocal geometry. Journal of Microscopy 222, 1–14 (2006).
doi: 10.1111/j.1365-2818.2006.01545.x
Castano-Diez, D., Scheffer, M., Al-Amoudi, A. & Frangakis, A. S. Alignator: a GPU powered software package for robust fiducial-less alignment of cryo tilt-series. Journal of Structural Biology 170, 117–126 (2010).
doi: 10.1016/j.jsb.2010.01.014
Sorzano, C. O. S. et al. Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10, 124 (2009).
doi: 10.1186/1471-2105-10-124
Parkinson, D. Y., Knoechel, C., Yang, C., Larabell, C. A. & Gros, M. A. L. Automatic alignment and reconstruction of images for soft X-ray tomography. Journal of Structural Biology 177, 259–266 (2012).
doi: 10.1016/j.jsb.2011.11.027
Amat, F. et al. Alignment of cryoelectron tomography datasets. Methods in Enzymology 482, 343–367 (2010).
doi: 10.1016/S0076-6879(10)82014-2
Yang, C., Ng, E. G. & Penczek, P. A. Unified 3D structure and projection orientation refinement using quasi-Newton algorithm. Journal of Structural Biology 149, 53–64 (2005).
doi: 10.1016/j.jsb.2004.08.010
Shepp, L. A. & Vardi, Y. Maximul likelihood reconstruction for emission tomography. IEEE Trans Med Imag MI 1, 113–121 (1982).
doi: 10.1109/TMI.1982.4307558
Gilbert, P. Iterative methods for 3-dimensional reconstruction of an object from projections. Journal of Theoretical Biology 36, 105–117 (1972).
doi: 10.1016/0022-5193(72)90180-4
Wang, C.-C. et al. Fast Projection Matching for X-ray Tomography. Scientific Reports 7, 3691 (2017).
doi: 10.1038/s41598-017-04020-0
Crowther, R. A., Amos, L. A., Finch, J. T., Rosier, D. J. D. & Klug, A. Three Dimensional Reconstructions of Spherical Viruses by Fourier Synthesis From Electron Micrographs. Nature 226, 421–425 (1970).
doi: 10.1038/226421a0
Liu, Y., Pemczek, P. A., McEwen, B. F. & Frank, J. A marker-free alignment method for electron tomography. Ultramicroscopy 58, 393–402 (1995).
doi: 10.1016/0304-3991(95)00006-M
Gürsoy, D. et al. Rapid Alignment of Nanotomography Data Using Joint Iterative Reconstruction and Reprojection. Scientific Reports 7, 11818 (2017).
doi: 10.1038/s41598-017-12141-9
Wang, C.-C. et al. Evolution and Function of Dinosaur Teeth at Ultramicrostructural Level Revealed Using Synchrotron Transmission X-ray Microscopy. Scientific Reports 5, 15202 (2015).
doi: 10.1038/srep15202

Auteurs

Chun-Chieh Wang (CC)

National Synchrotron Radiation Research Center, 30076, Hsinchu, Taiwan. wang.jay@nsrrc.org.tw.

Classifications MeSH