Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 04 2020
30 04 2020
Historique:
received:
01
11
2019
accepted:
15
04
2020
entrez:
2
5
2020
pubmed:
2
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Transcranial electrical stimulation (TES) is a widely accepted neuromodulation modality for treating brain disorders. However, its clinical efficacy is fundamentally limited due to the current shunting effect of the scalp and safety issues. A newer electrical stimulation technique called subcutaneous electrical stimulation (SES) promises to overcome the limitations of TES by applying currents directly at the site of the disorder through the skull. While SES seems promising, the electrophysiological effect of SES compared to TES is still unknown, thus limiting its broader application. Here we comprehensively analyze the SES and TES to demonstrate the effectiveness and advantages of SES. Beagles were bilaterally implanted with subdural strips for intracranial electroencephalography and electric field recording. For the intracerebral electric field prediction, we designed a 3D electromagnetic simulation framework and simulated TES and SES. In the beagle model, SES induces three to four-fold larger cerebral electric fields compared to TES, and significant changes in power ratio of brainwaves were observed only in SES. Our prediction framework suggests that the field penetration of SES would be several-fold larger than TES in human brains. These results demonstrate that the SES would significantly enhance the neuromodulatory effects compared to conventional TES and overcome the TES limitations.
Identifiants
pubmed: 32355172
doi: 10.1038/s41598-020-64378-6
pii: 10.1038/s41598-020-64378-6
pmc: PMC7193608
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7360Références
Baker, J. M., Rorden, C. & Fridriksson, J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41, 1229–1236, https://doi.org/10.1161/STROKEAHA.109.576785 (2010).
doi: 10.1161/STROKEAHA.109.576785
pubmed: 20395612
pmcid: 2876210
Shafi, M. M., Westover, M. B., Fox, M. D. & Pascual-Leone, A. Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. European Journal of Neuroscience 35, 805–825, https://doi.org/10.1111/j.1460-9568.2012.08035.x (2012).
doi: 10.1111/j.1460-9568.2012.08035.x
pubmed: 22429242
Auvichayapat, N. et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain stimulation 6, 696–700, https://doi.org/10.1016/j.brs.2013.01.009 (2013).
doi: 10.1016/j.brs.2013.01.009
pubmed: 23415937
Ruffini, G. et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21, 333–345, https://doi.org/10.1109/TNSRE.2012.2200046 (2013).
doi: 10.1109/TNSRE.2012.2200046
pubmed: 22949089
Yavari, F., Nitsche, M. A. & Ekhtiari, H. Transcranial electric stimulation for precision medicine: a spatiomechanistic framework. Frontiers in human neuroscience 11, 159, https://doi.org/10.3389/fnhum.2017.00159 (2017).
doi: 10.3389/fnhum.2017.00159
pubmed: 28450832
pmcid: 5390027
Nitsche, M. A. & Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology 527, 633–639, https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x (2000).
doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
pubmed: 10990547
pmcid: 2270099
Nitsche, M. A. & Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901, https://doi.org/10.1212/WNL.57.10.1899 (2001).
doi: 10.1212/WNL.57.10.1899
pubmed: 11723286
Nitsche, M. A. et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology 114, 600–604, https://doi.org/10.1016/S1388-2457(02)00412-1 (2003).
doi: 10.1016/S1388-2457(02)00412-1
pubmed: 12686268
Nitsche, M. A. et al. Transcranial direct current stimulation: state of the art 2008. Brain stimulation 1, 206–223, https://doi.org/10.1016/j.brs.2008.06.004 (2008).
doi: 10.1016/j.brs.2008.06.004
pubmed: 20633386
Ali, M. M., Sellers, K. K. & Fröhlich, F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. Journal of Neuroscience 33, 11262–11275, https://doi.org/10.1523/JNEUROSCI.5867-12.2013 (2013).
doi: 10.1523/JNEUROSCI.5867-12.2013
pubmed: 23825429
Antal, A. & Paulus, W. Transcranial alternating current stimulation (tACS). Frontiers in human neuroscience https://doi.org/10.3389/fnhum.2013.00317 (2013).
doi: 10.3389/fnhum.2013.00317
pubmed: 23935578
pmcid: 3733022
Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Frontiers in human neuroscience 7, 687, https://doi.org/10.3389/fnhum.2013.00687 (2013).
doi: 10.3389/fnhum.2013.00687
pubmed: 24167483
pmcid: 3805939
Lustenberger, C. et al. Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Current Biology 26, 2127–2136, https://doi.org/10.1016/j.cub.2016.06.044 (2016).
doi: 10.1016/j.cub.2016.06.044
pubmed: 27476602
Huang, Y. et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife 6, e18834, https://doi.org/10.7554/eLife.18834 (2017).
doi: 10.7554/eLife.18834
pubmed: 28169833
pmcid: 5370189
Chhatbar, P. Y. et al. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain stimulation 11, 727–733, https://doi.org/10.1016/j.brs.2018.03.006 (2018).
doi: 10.1016/j.brs.2018.03.006
pubmed: 29576498
pmcid: 6019625
Vöröslakos, M. et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature communications 9, 483, https://doi.org/10.1038/s41467-018-02928-3 (2018).
doi: 10.1038/s41467-018-02928-3
pubmed: 29396478
pmcid: 5797140
Bikson, M. et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain stimulation 9, 641–661, https://doi.org/10.1016/j.brs.2016.06.004 (2016).
doi: 10.1016/j.brs.2016.06.004
pubmed: 27372845
pmcid: 5007190
Antal, A. et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology 128, 1774–1809, https://doi.org/10.1016/j.clinph.2017.06.001 (2017).
doi: 10.1016/j.clinph.2017.06.001
pubmed: 28709880
pmcid: 5985830
Lee, H. et al. Development of wirelessly-powered, extracranial brain activator (ECBA) in a large animal model for the future non-invasive human neuromodulation. Scientific reports 9, 10906, https://doi.org/10.1038/s41598-019-47383-2 (2019).
doi: 10.1038/s41598-019-47383-2
pubmed: 31358822
pmcid: 6662771
Gabriel, C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. (KING’S COLL LONDON (UNITED KINGDOM) DEPT OF PHYSICS, 1996).
Gabriel, C., Gabriel, S. & Corthout, Y. E. The dielectric properties of biological tissues: I. Literature survey. Physics in medicine & biology 41, 2231, https://doi.org/10.1088/0031-9155/41/11/001 (1996).
doi: 10.1088/0031-9155/41/11/001
Gabriel, S., Lau, R. & Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in medicine & biology 41, 2251, https://doi.org/10.1088/0031-9155/41/11/002 (1996).
doi: 10.1088/0031-9155/41/11/002
Gabriel, S., Lau, R. & Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology 41, 2271, https://doi.org/10.1088/0031-9155/41/11/003 (1996).
doi: 10.1088/0031-9155/41/11/003
Park, J. S. et al. Visible Korean human: improved serially sectioned images of the entire body. IEEE transactions on medical imaging 24, 352–360, https://doi.org/10.1109/TMI.2004.842454 (2005).
doi: 10.1109/TMI.2004.842454
pubmed: 15754985
Park, H. S., Choi, D. H. & Park, J. S. Improved Sectioned Images and Surface Models of the Whole Female Body. International Journal of Morphology 33, https://doi.org/10.4067/S0717-95022015000400022 (2015).
Chung, B. S. & Park, J. S. Real-Color Volume Models Made from Real-Color Sectioned Images of Visible Korean. Journal of Korean medical science 34, https://doi.org/10.3346/jkms.2019.34.e86 (2019).
Palm, U. et al. Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 1, 386–387, https://doi.org/10.1016/j.brs.2008.04.003 (2008).
doi: 10.1016/j.brs.2008.04.003
Guarienti, F. et al. Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials. Neuromodulation: Technology at the Neural Interface 18, 261–265, https://doi.org/10.1111/ner.12230 (2015).
doi: 10.1111/ner.12230
Laakso, I. & Hirata, A. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. Journal of neural engineering 10, 046009, https://doi.org/10.1088/1741-2560/10/4/046009 (2013).
doi: 10.1088/1741-2560/10/4/046009
pubmed: 23813466
Matsumoto, H. & Ugawa, Y. Adverse events of tDCS and tACS: a review. Clinical Neurophysiology Practice 2, 19–25, https://doi.org/10.1016/j.cnp.2016.12.003 (2017).
doi: 10.1016/j.cnp.2016.12.003
pubmed: 30214966
Lafon, B. et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nature communications 8, 1199, https://doi.org/10.1038/s41467-017-01045-x (2017).
doi: 10.1038/s41467-017-01045-x
pubmed: 29084960
pmcid: 5662600
Ozen, S. et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. Journal of Neuroscience 30, 11476–11485, https://doi.org/10.1523/JNEUROSCI.5252-09.2010 (2010).
doi: 10.1523/JNEUROSCI.5252-09.2010
pubmed: 20739569
Fröhlich, F. & McCormick, D. A. Endogenous electric fields may guide neocortical network activity. Neuron 67, 129–143, https://doi.org/10.1016/j.neuron.2010.06.005 (2010).
doi: 10.1016/j.neuron.2010.06.005
pubmed: 20624597
pmcid: 3139922
Berényi, A., Belluscio, M., Mao, D. & Buzsáki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737, https://doi.org/10.1126/science.1223154 (2012).
doi: 10.1126/science.1223154
pubmed: 22879515
pmcid: 4908579
Spitoni, G. F., Di Russo, F., Cimmino, R. L., Bozzacchi, C. & Pizzamiglio, L. Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation. Frontiers in human neuroscience 7, 529, https://doi.org/10.3389/fnhum.2013.00529 (2013).
doi: 10.3389/fnhum.2013.00529
pubmed: 24027517
pmcid: 3759788
Datta, A., Bikson, M. & Fregni, F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. Neuroimage 52, 1268–1278, https://doi.org/10.1016/j.neuroimage.2010.04.252 (2010).
doi: 10.1016/j.neuroimage.2010.04.252
pubmed: 20435146
pmcid: 2910315
Datta, A., Dmochowski, J. P., Guleyupoglu, B., Bikson, M. & Fregni, F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage 65, 280–287, https://doi.org/10.1016/j.neuroimage.2012.09.062 (2013).
doi: 10.1016/j.neuroimage.2012.09.062
pubmed: 23041337
Luu, P. et al. Slow-Frequency pulsed transcranial electrical stimulation for modulation of cortical plasticity based on reciprocity targeting with precision electrical head modeling. Frontiers in human neuroscience 10, 377, https://doi.org/10.3389/fnhum.2016.00377 (2016).
doi: 10.3389/fnhum.2016.00377
pubmed: 27531976
pmcid: 4969286
Bikson, M., Rahman, A., Datta, A., Fregni, F. & Merabet, L. High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation: Technology at the Neural Interface 15, 306–315, https://doi.org/10.1111/j.1525-1403.2012.00481.x (2012).
doi: 10.1111/j.1525-1403.2012.00481.x
Neuling, T., Wagner, S., Wolters, C. H., Zaehle, T. & Herrmann, C. S. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Frontiers in psychiatry 3, 83, https://doi.org/10.3389/fpsyt.2012.00083 (2012).
doi: 10.3389/fpsyt.2012.00083
pubmed: 23015792
pmcid: 3449241
Dmochowski, J. P. et al. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage 75, 12–19, https://doi.org/10.1016/j.neuroimage.2013.02.049 (2013).
doi: 10.1016/j.neuroimage.2013.02.049
pubmed: 23473936
pmcid: 4120279
Ho, K.-A. et al. Clinical pilot study and computational modeling of bitemporal transcranial direct current stimulation, and safety of repeated courses of treatment, in major depression. The journal of ECT 31, 226–233, https://doi.org/10.1097/YCT.0000000000000230 (2015).
doi: 10.1097/YCT.0000000000000230
pubmed: 25807341
Faria, P., Hallett, M. & Miranda, P. C. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. Journal of neural engineering 8, 066017, https://doi.org/10.1088/1741-2560/8/6/066017 (2011).
doi: 10.1088/1741-2560/8/6/066017
pubmed: 22086257
pmcid: 3411515
Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. Journal of Neuroscience 33, 19326–19340, https://doi.org/10.1523/JNEUROSCI.1688-13.2013 (2013).
doi: 10.1523/JNEUROSCI.1688-13.2013
pubmed: 24305828
Hoekema, R. et al. Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain topography 16, 29–38, https://doi.org/10.1023/A:1025606415858 (2003).
doi: 10.1023/A:1025606415858
pubmed: 14587967
Akhtari, M. et al. Conductivities of three-layer live human skull. Brain topography 14, 151–167, https://doi.org/10.1023/A:1014590923185 (2002).
doi: 10.1023/A:1014590923185
pubmed: 12002346
Yamamoto, T. & Yamamoto, Y. Electrical properties of the epidermal stratum corneum. Medical and biological engineering 14, 151–158, https://doi.org/10.1007/BF02478741 (1976).
doi: 10.1007/BF02478741
pubmed: 940370
Zhao, J. & Levy, D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. PAIN® 155, 1392–1400, https://doi.org/10.1016/j.pain.2014.04.019 (2014).
doi: 10.1016/j.pain.2014.04.019
Lee, D. J., Dallapiazza, R. F., De Vloo, P. & Lozano, A. M. Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural regeneration research 13, 1342, https://doi.org/10.4103/1673-5374.235220 (2018).
doi: 10.4103/1673-5374.235220
pubmed: 30106037
pmcid: 6108190
Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041. e1016, https://doi.org/10.1016/j.cell.2017.05.024 (2017).
doi: 10.1016/j.cell.2017.05.024
pubmed: 28575667
pmcid: 5520675
Brittain, J.-S. & Cagnan, H. Recent trends in the use of electrical neuromodulation in Parkinson’s disease. Current behavioral neuroscience reports 5, 170–178, https://doi.org/10.1007/s40473-018-0154-9 (2018).
doi: 10.1007/s40473-018-0154-9
pubmed: 29862163
pmcid: 5962624
Lefaucheur, J.-P. Treatment of Parkinson’s disease by cortical stimulation. Expert review of neurotherapeutics 9, 1755–1771, https://doi.org/10.1586/ern.09.132 (2009).
doi: 10.1586/ern.09.132
pubmed: 19951135
Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z. & Brown, P. Driving oscillatory activity in the human cortex enhances motor performance. Current Biology 22, 403–407, https://doi.org/10.1016/j.cub.2012.01.024 (2012).
doi: 10.1016/j.cub.2012.01.024
pubmed: 22305755
pmcid: 3343257
Herron, J. A. et al. Cortical brain–computer interface for closed-loop deep brain stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 2180–2187, https://doi.org/10.1109/TNSRE.2017.2705661 (2017).
doi: 10.1109/TNSRE.2017.2705661
pubmed: 28541211
Kuo, H.-I. et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain stimulation 6, 644–648, https://doi.org/10.1016/j.brs.2012.09.010 (2013).
Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340, https://doi.org/10.1016/S0896-6273(02)00586-X (2002).
doi: 10.1016/S0896-6273(02)00586-X
pubmed: 11832222
Deans, J. K., Powell, A. D. & Jefferys, J. G. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of physiology 583, 555–565, https://doi.org/10.1113/jphysiol.2007.137711 (2007).
doi: 10.1113/jphysiol.2007.137711
pubmed: 17599962
pmcid: 2277040
Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience 30, 15067–15079, https://doi.org/10.1523/JNEUROSCI.2059-10.2010 (2010).
doi: 10.1523/JNEUROSCI.2059-10.2010
pubmed: 21068312
Datta, A. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in psychiatry 3, 91, https://doi.org/10.3389/fpsyt.2012.00091 (2012).
doi: 10.3389/fpsyt.2012.00091
pubmed: 23097644
pmcid: 3477710
Purdon, P. L., Sampson, A., Pavone, K. J. & Brown, E. N. Clinical electroencephalography for anesthesiologistspart I: background and basic signatures. Anesthesiology: The Journal of the American Society of Anesthesiologists 123, 937–960, https://doi.org/10.1097/ALN.0000000000000841 (2015).
doi: 10.1097/ALN.0000000000000841
Navarrete, R. et al. Effect of dexmedetomidine constant rate infusion on the bispectral index during alfaxalone anaesthesia in dogs. Veterinary anaesthesia and analgesia 43, 397–404, https://doi.org/10.1111/vaa.12323 (2016).
doi: 10.1111/vaa.12323
pubmed: 26621559
Akeju, O. et al. Spatiotemporal dynamics of dexmedetomidine-induced electroencephalogram oscillations. PloS one 11, e0163431, https://doi.org/10.1371/journal.pone.0163431 (2016).
doi: 10.1371/journal.pone.0163431
pubmed: 27711165
pmcid: 5053525
Sleigh, J. W., Vacas, S., Flexman, A. M. & Talke, P. O. Electroencephalographic Arousal Patterns Under Dexmedetomidine Sedation. Anesthesia & Analgesia 127, 951–959, https://doi.org/10.1213/ANE.0000000000003590 (2018).
doi: 10.1213/ANE.0000000000003590