Polymorphisms in PARP1 predict disease-free survival of triple-negative breast cancer patients treated with anthracycline/taxane based adjuvant chemotherapy.
Anthracyclines
/ therapeutic use
Bridged-Ring Compounds
/ therapeutic use
Chemotherapy, Adjuvant
/ methods
Disease-Free Survival
Female
Genotype
Humans
Kaplan-Meier Estimate
Multivariate Analysis
Poly (ADP-Ribose) Polymerase-1
/ genetics
Prognosis
Taxoids
/ therapeutic use
Triple Negative Breast Neoplasms
/ drug therapy
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 04 2020
30 04 2020
Historique:
received:
15
10
2019
accepted:
15
04
2020
entrez:
2
5
2020
pubmed:
2
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Triple-negative breast cancer (TNBC) is a highly aggressive disease and of poor prognosis. It is very important to identify novel biomarkers to predict therapeutic response and outcome of TNBC. We investigated the association between polymorphisms in PARP1 gene and clinicopathological characteristics or survival of 272 patients with stage I-III primary TNBC treated with anthracycline/taxane based adjuvant chemotherapy. We found that after adjusted by age, grade, tumor size, lymph node status and vascular invasion, rs7531668 TA genotype carriers had significantly better DFS rate than TT genotype carriers, the 5 y DFS was 79.3% and 69.2% (P = 0.046, HR 0.526 95% CI 0.280-0.990). In lymph node negative subgroup, DFS of rs6664761 CC genotype carriers was much better than TT genotype carriers (P = 0.016, HR 0.261 95% CI 0.088-0.778) and DFS of rs7531668 AA genotype carriers was shorter than TT genotype carriers (P = 0.015, HR 3.361 95% CI 1.259-8.969). In subgroup of age ≤ 50, rs6664761 TC genotype predicted favorable DFS than TT genotype (P = 0.042, HR 0.405 95% CI 0.170-0.967). Polymorphisms in PARP1 gene had no influence on treatment toxicities. After multivariate analysis, tumor size (P = 0.037, HR = 2.829, 95% CI: 1.063-7.525) and lymph node status (P < 0.001, HR = 9.943, 95% CI: 2.974-33.243) were demonstrated to be independent prognostic factors. Our results suggested that polymorphisms in PARP1 gene might predict the DFS of TNBC patients treated with anthracycline/taxane based adjuvant chemotherapy.
Identifiants
pubmed: 32355298
doi: 10.1038/s41598-020-64473-8
pii: 10.1038/s41598-020-64473-8
pmc: PMC7192942
doi:
Substances chimiques
Anthracyclines
0
Bridged-Ring Compounds
0
Taxoids
0
taxane
1605-68-1
PARP1 protein, human
EC 2.4.2.30
Poly (ADP-Ribose) Polymerase-1
EC 2.4.2.30
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7349Références
Siegel, R. L. & Miller, K. D. Cancer statistics. 2019 69, 7–34, https://doi.org/10.3322/caac.21551 (2019).
doi: 10.3322/caac.21551
Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752, https://doi.org/10.1038/35021093 (2000).
doi: 10.1038/35021093
Haffty, B. G. et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 24, 5652–5657, https://doi.org/10.1200/jco.2006.06.5664 (2006).
doi: 10.1200/jco.2006.06.5664
Perou, C. M. Molecular stratification of triple-negative breast cancers. The oncologist 16(Suppl 1), 61–70, https://doi.org/10.1634/theoncologist.2011-S1-61 (2011).
doi: 10.1634/theoncologist.2011-S1-61
pubmed: 21278442
Udyavar, A. R. et al. Genomic Alterations Associated with Recurrence and TNBC Subtype in High-risk Early Breast Cancers. https://doi.org/10.1158/1541-7786.mcr-18-0619 (2018).
Andre, F. & Zielinski, C. C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Annals of oncology: official journal of the European Society for Medical Oncology 23(Suppl 6), vi46–51, https://doi.org/10.1093/annonc/mds195 (2012).
doi: 10.1093/annonc/mds195
Burstein, M. D. et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 21, 1688–1698, https://doi.org/10.1158/1078-0432.ccr-14-0432 (2015).
doi: 10.1158/1078-0432.ccr-14-0432
Hoeijmakers, J. H. DNA damage, aging, and cancer. The New England journal of medicine 361, 1475–1485, https://doi.org/10.1056/NEJMra0804615 (2009).
doi: 10.1056/NEJMra0804615
pubmed: 19812404
Carter, R. J. & Parsons, J. L. Base Excision Repair, a Pathway Regulated by Posttranslational Modifications. Molecular and cellular biology 36, 1426–1437, https://doi.org/10.1128/mcb.00030-16 (2016).
doi: 10.1128/mcb.00030-16
pubmed: 26976642
pmcid: 4859697
Lord, C. J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294, https://doi.org/10.1038/nature10760 (2012).
doi: 10.1038/nature10760
pubmed: 22258607
Ame, J. C. & Spenlehauer, C. & de Murcia, G. The PARP superfamily. BioEssays: news and reviews in molecular, cellular and developmental biology 26, 882–893, https://doi.org/10.1002/bies.20085 (2004).
doi: 10.1002/bies.20085
Abd Elmageed, Z. Y., Naura, A. S., Errami, Y. & Zerfaoui, M. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cellular signalling 24, 1–8, https://doi.org/10.1016/j.cellsig.2011.07.019 (2012).
doi: 10.1016/j.cellsig.2011.07.019
pubmed: 21840394
Green, A. R. et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast cancer research and treatment 149, 353–362, https://doi.org/10.1007/s10549-014-3230-1 (2015).
doi: 10.1007/s10549-014-3230-1
pubmed: 25528020
Zhai, L. et al. The nuclear expression of poly (ADP-ribose) polymerase-1 (PARP1) in invasive primary breast tumors is associated with chemotherapy sensitivity. Pathology, research and practice 211, 130–137, https://doi.org/10.1016/j.prp.2014.11.004 (2015).
doi: 10.1016/j.prp.2014.11.004
pubmed: 25480692
Chambon, P., Weill, J. D. & Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochemical and biophysical research communications 11, 39–43 (1963).
doi: 10.1016/0006-291X(63)90024-X
Aparicio, T., Baer, R. & Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA repair 19, 169–175, https://doi.org/10.1016/j.dnarep.2014.03.014 (2014).
doi: 10.1016/j.dnarep.2014.03.014
pubmed: 24746645
pmcid: 4051845
Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harbor perspectives in biology 5, a012740, https://doi.org/10.1101/cshperspect.a012740 (2013).
doi: 10.1101/cshperspect.a012740
pubmed: 24097900
pmcid: 3809576
Schiewer, M. J. et al. PARP-1 regulates DNA repair factor availability. 10, https://doi.org/10.15252/emmm.201708816 (2018).
Lee, W. P. et al. Helicobacter pylori-induced chronic inflammation causes telomere shortening of gastric mucosa by promoting PARP-1-mediated non-homologous end joining of DNA. Archives of biochemistry and biophysics 606, 90–98, https://doi.org/10.1016/j.abb.2016.07.014 (2016).
doi: 10.1016/j.abb.2016.07.014
pubmed: 27450718
Rojo, F. et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Annals of oncology: official journal of the European Society for Medical Oncology 23, 1156–1164, https://doi.org/10.1093/annonc/mdr361 (2012).
doi: 10.1093/annonc/mdr361
Donizy, P. et al. Nuclear-cytoplasmic PARP-1 expression as an unfavorable prognostic marker in lymph nodenegative early breast cancer: 15-year follow-up. Oncology reports 31, 1777–1787, https://doi.org/10.3892/or.2014.3024 (2014).
doi: 10.3892/or.2014.3024
pubmed: 24535158
Aiad, H. A. et al. The prognostic and predictive significance of PARP-1 in locally advanced breast cancer of Egyptian patients receiving neoadjuvant chemotherapy. Applied immunohistochemistry & molecular morphology: AIMM 23, 571–579, https://doi.org/10.1097/pai.0000000000000124 (2015).
doi: 10.1097/pai.0000000000000124
Qiao, W., Pan, L., Kou, C., Li, K. & Yang, M. Prognostic and clinicopathological value of poly (adenosine diphosphate-ribose) polymerase expression in breast cancer: A meta-analysis. PloS one 12, e0172413, https://doi.org/10.1371/journal.pone.0172413 (2017).
doi: 10.1371/journal.pone.0172413
pubmed: 28212434
pmcid: 5315304
von Minckwitz, G. et al. Cytoplasmic poly(adenosine diphosphate-ribose) polymerase expression is predictive and prognostic in patients with breast cancer treated with neoadjuvant chemotherapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 29, 2150–2157, https://doi.org/10.1200/jco.2010.31.9079 (2011).
doi: 10.1200/jco.2010.31.9079
Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Science signaling 4, ra20, https://doi.org/10.1126/scisignal.2000902 (2011).
doi: 10.1126/scisignal.2000902
pubmed: 21467298
pmcid: 3086524
Qin, Q. et al. PARP-1 Val762Ala polymorphism and risk of cancer: a meta-analysis based on 39 case-control studies. PloS one 9, e98022, https://doi.org/10.1371/journal.pone.0098022 (2014).
doi: 10.1371/journal.pone.0098022
pubmed: 24853559
pmcid: 4031170
Alanazi, M. et al. Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population. PloS one 8, e85541, https://doi.org/10.1371/journal.pone.0085541 (2013).
doi: 10.1371/journal.pone.0085541
pubmed: 24392019
pmcid: 3877358
Wang, X. G., Wang, Z. Q., Tong, W. M. & Shen, Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochemical and biophysical research communications 354, 122–126, https://doi.org/10.1016/j.bbrc.2006.12.162 (2007).
doi: 10.1016/j.bbrc.2006.12.162
pubmed: 17214964
Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology 17, 1471–1474, https://doi.org/10.1245/s10434-010-0985-4 (2010).
doi: 10.1245/s10434-010-0985-4
pubmed: 20180029
Wolff, A. C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 31, 3997–4013, https://doi.org/10.1200/jco.2013.50.9984 (2013).
doi: 10.1200/jco.2013.50.9984
Hammond, M. E. et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 28, 2784–2795, https://doi.org/10.1200/jco.2009.25.6529 (2010).
doi: 10.1200/jco.2009.25.6529
Xiu, L., Zhang, C., Wu, Z. & Peng, J. Establishment and Application of a Universal Coronavirus Screening Method Using MALDI-TOF Mass Spectrometry. Frontiers in microbiology 8, 1510, https://doi.org/10.3389/fmicb.2017.01510 (2017).
doi: 10.3389/fmicb.2017.01510
pubmed: 28848521
pmcid: 5552709
Cheung, K. W. et al. Rapid and Simultaneous Detection of Major Drug Resistance Mutations in Reverse Transcriptase Gene for HIV-1 CRF01_AE, CRF07_BC and Subtype B in China Using Sequenom MassARRAY(R) System. PloS one 11, e0153641, https://doi.org/10.1371/journal.pone.0153641 (2016).
doi: 10.1371/journal.pone.0153641
pubmed: 27092551
pmcid: 4836728