Potential toxicity of polystyrene microplastic particles.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 04 2020
Historique:
received: 11 09 2019
accepted: 16 04 2020
entrez: 2 5 2020
pubmed: 2 5 2020
medline: 2 5 2020
Statut: epublish

Résumé

Environmental pollution arising from plastic waste is a major global concern. Plastic macroparticles, microparticles, and nanoparticles have the potential to affect marine ecosystems and human health. It is generally accepted that microplastic particles are not harmful or at best minimal to human health. However direct contact with microplastic particles may have possible adverse effect in cellular level. Primary polystyrene (PS) particles were the focus of this study, and we investigated the potential impacts of these microplastics on human health at the cellular level. We determined that PS particles were potential immune stimulants that induced cytokine and chemokine production in a size-dependent and concentration-dependent manner.

Identifiants

pubmed: 32355311
doi: 10.1038/s41598-020-64464-9
pii: 10.1038/s41598-020-64464-9
pmc: PMC7193629
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7391

Références

Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).
pubmed: 25013051 doi: 10.1126/science.1254065 pmcid: 25013051
Dauvergne, P. The power of environmental norms: marine plastic pollution and the politics of microbeads. Environmental Politics 27, 579–597 (2018).
doi: 10.1080/09644016.2018.1449090
Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine pollution bulletin 58, 1225–1228 (2009).
pubmed: 19481226 doi: 10.1016/j.marpolbul.2009.04.025 pmcid: 19481226
Napper, I. E., Bakir, A., Rowland, S. J. & Thompson, R. C. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185 (2015).
pubmed: 26234612 doi: 10.1016/j.marpolbul.2015.07.029 pmcid: 26234612
Gregory, M. R. Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Marine pollution bulletin 32, 867–871 (1996).
doi: 10.1016/S0025-326X(96)00047-1
Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research 24, 21530–21547 (2017).
pubmed: 28815367 doi: 10.1007/s11356-017-9910-8 pmcid: 28815367
Shi, D. et al. Fluorescent polystyrene–Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Advanced Materials 21, 2170–2173 (2009).
doi: 10.1002/adma.200803159
Ryan, P. G., Moore, C. J., van Franeker, J. A. & Moloney, C. L. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364, 1999–2012 (2009).
pubmed: 19528052 doi: 10.1098/rstb.2008.0207 pmcid: 19528052
Thompson, R. et al. New directions in plastic debris. Science 310, 1117–1117 (2005).
pubmed: 16293739 doi: 10.1126/science.310.5751.1117b pmcid: 16293739
Cheung, P. K. & Fok, L. Evidence of microbeads from personal care product contaminating the sea. Mar. Pollut. Bull. 109, 582–585 (2016).
pubmed: 27237038 doi: 10.1016/j.marpolbul.2016.05.046 pmcid: 27237038
Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts 17, 1513–1521 (2015).
Andrady, A. L. Microplastics in the marine environment. Marine pollution bulletin 62, 1596–1605 (2011).
pubmed: 21742351 doi: 10.1016/j.marpolbul.2011.05.030 pmcid: 21742351
Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).
pubmed: 26688263 pmcid: 5250697 doi: 10.1016/j.chemosphere.2015.11.078
Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific reports 6, 34351 (2016).
pubmed: 27686984 pmcid: 5043373 doi: 10.1038/srep34351
Santillo, D., Miller, K. & Johnston, P. Microplastics as contaminants in commercially important seafood species. Integrated environmental assessment and management 13, 516–521 (2017).
pubmed: 28440928 doi: 10.1002/ieam.1909 pmcid: 28440928
Smith, M., Love, D. C., Rochman, C. M. & Neff, R. A. Microplastics in seafood and the implications for human health. Current environmental health reports 5, 375–386 (2018).
pubmed: 30116998 pmcid: 6132564 doi: 10.1007/s40572-018-0206-z
Olsen, S. O. Understanding the relationship between age and seafood consumption: the mediating role of attitude, health involvement and convenience. Food quality and Preference 14, 199–209 (2003).
doi: 10.1016/S0950-3293(02)00055-1
Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environmental pollution 193, 65–70 (2014).
pubmed: 25005888 doi: 10.1016/j.envpol.2014.06.010 pmcid: 25005888
Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific reports 5, 14340 (2015).
pubmed: 26399762 pmcid: 4585829 doi: 10.1038/srep14340
Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environmental pollution 185, 77–83 (2014).
pubmed: 24220023 doi: 10.1016/j.envpol.2013.10.013 pmcid: 24220023
Storck, F. R., Kools, S. A. & Rinck-Pfeiffer, S. Microplastics in fresh water resources. Global Water Research Coalition, Stirling, South Australia, Australia (2015).
Bruck, S. & Ford, A. T. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus? Environmental pollution 233, 1125–1130 (2018).
pubmed: 29037496 doi: 10.1016/j.envpol.2017.10.015 pmcid: 29037496
Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences 113, 2430–2435 (2016).
doi: 10.1073/pnas.1519019113
Schymanski, D., Goldbeck, C., Humpf, H.-U. & Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Research 129, 154–162 (2018).
pubmed: 29145085 doi: 10.1016/j.watres.2017.11.011 pmcid: 29145085
Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water research 91, 174–182 (2016).
pubmed: 26795302 doi: 10.1016/j.watres.2016.01.002 pmcid: 26795302
Phuong, N. N. et al. Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environmental Pollution 211, 111–123 (2016).
pubmed: 26745396 doi: 10.1016/j.envpol.2015.12.035 pmcid: 26745396
Jeong, C.-B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental science & technology 50, 8849–8857 (2016).
doi: 10.1021/acs.est.6b01441
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental science & technology 52, 1704–1724 (2018).
doi: 10.1021/acs.est.7b05559
Cai, L. et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 197, 142–151 (2018).
pubmed: 29348047 doi: 10.1016/j.chemosphere.2018.01.052 pmcid: 29348047
Mattsson, K. et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports 7, 1–7 (2017).
doi: 10.1038/s41598-017-10813-0
Revel, M., Châtel, A. & Mouneyrac, C. Micro (nano) plastics: A threat to human health? Current Opinion in Environmental Science & Health 1, 17–23 (2018).
doi: 10.1016/j.coesh.2017.10.003
Sass, W., Dreyer, H.-P. & Seifert, J. Rapid insorption of small particles in the gut. American Journal of Gastroenterology 85 (1990).
Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).
pubmed: 29304465 doi: 10.1016/j.envpol.2017.12.088 pmcid: 29304465
Prata, J. C. Airborne microplastics: consequences to human health? Environ. Pollut. 234, 115–126 (2018).
pubmed: 29172041 doi: 10.1016/j.envpol.2017.11.043 pmcid: 29172041
Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).
pubmed: 25563688 doi: 10.1021/es504525u pmcid: 25563688
Todd, G., Wohlers, D. & Citra, M. Agency for toxic substances and disease registry. Atlanta, GA (2003).
Leslie, H. Review of microplastics in cosmetics. Institute for Environmental Studies [IVM] 4 (2014).
Galloway, T. S. in Marine anthropogenic litter 343-366 (Springer, Cham (2015).
Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment 643, 1644–1651 (2018).
pubmed: 30104017 doi: 10.1016/j.scitotenv.2018.08.102 pmcid: 30104017
Bergmann, M., Gutow, L. & Klages, M. Marine anthropogenic litter. (Springer (2015).
Schellenberg, J. Syndiotactic polystyrene: synthesis, characterization, processing, and applications. (John Wiley & Sons (2009).
Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental science & technology 47, 11278–11283 (2013).
doi: 10.1021/es401932b
Gambardella, C. et al. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicology and environmental safety 145, 250–257 (2017).
pubmed: 28750293 doi: 10.1016/j.ecoenv.2017.07.036 pmcid: 28750293
Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Marine pollution bulletin 108, 105–112 (2016).
pubmed: 27184128 doi: 10.1016/j.marpolbul.2016.04.048 pmcid: 27184128
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70, 1–20 (2001).
doi: 10.1016/S0168-3659(00)00339-4
Hayashi, S., Kumamoto, Y., Suzuki, T. & Hirai, T. Imaging by polystyrene latex particles. J. Colloid Interface Sci. 144, 538–547 (1991).
doi: 10.1016/0021-9797(91)90419-9
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of food and drug analysis 22, 64–75 (2014).
pubmed: 24673904 doi: 10.1016/j.jfda.2014.01.005 pmcid: 24673904
Min, Y.-D. et al. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflammation Res. 56, 210–215 (2007).
doi: 10.1007/s00011-007-6172-9
Hwang, J., Choi, D., Han, S., Choi, J. & Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Science of The Total Environment 684, 657–669 (2019).
pubmed: 31158627 doi: 10.1016/j.scitotenv.2019.05.071 pmcid: 31158627
Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water research (2019).
Mason, S. A., Welch, V. G. & Neratko, J. Synthetic polymer contamination in bottled water. Frontiers in chemistry 6, 407 (2018).
pubmed: 30255015 pmcid: 6141690 doi: 10.3389/fchem.2018.00407
Conkle, J. L., Del Valle, C. D. B. & Turner, J. W. Are we underestimating microplastic contamination in aquatic environments? Environmental management 61, 1–8 (2018).
pubmed: 29043380 doi: 10.1007/s00267-017-0947-8 pmcid: 29043380
Ravit, B. et al. Microplastics in urban New Jersey freshwaters: distribution, chemical identification, and biological affects. Aims Environmental Science 4, 809–826 (2017).
doi: 10.3934/environsci.2017.6.809
Goldstein, J. L., Anderson, R. G. & Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679 (1979).
pubmed: 221835 doi: 10.1038/279679a0 pmcid: 221835
Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).
pubmed: 10358769 doi: 10.1146/annurev.immunol.17.1.593 pmcid: 10358769
Xia, T., Kovochich, M., Liong, M., Zink, J. I. & Nel, A. E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS nano 2, 85–96 (2007).
doi: 10.1021/nn700256c
He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).
pubmed: 20138662 doi: 10.1016/j.biomaterials.2010.01.065 pmcid: 20138662
Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003).
pubmed: 12527253 doi: 10.1016/S0142-9612(02)00445-3 pmcid: 12527253
Dodge, J. T., Mitchell, C. & Hanahan, D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Archives of biochemistry and biophysics 100, 119–130 (1963).
pubmed: 14028302 doi: 10.1016/0003-9861(63)90042-0 pmcid: 14028302
Sayes, C. M., Reed, K. L. & Warheit, D. B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007).
pubmed: 17301066 doi: 10.1093/toxsci/kfm018 pmcid: 17301066
Chen, H.-T., Neerman, M. F., Parrish, A. R. & Simanek, E. E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 126, 10044–10048 (2004).
pubmed: 15303879 doi: 10.1021/ja048548j pmcid: 15303879
Blackshear, P. Jr et al. Shear, wall interaction and hemolysis. ASAIO J. 12, 113–120 (1966).
Choi, J., Reipa, V., Hitchins, V. M., Goering, P. L. & Malinauskas, R. A. Physicochemical Characterization and In V itro Hemolysis Evaluation of Silver Nanoparticles. Toxicol. Sci. 123, 133–143 (2011).
pubmed: 21652737 doi: 10.1093/toxsci/kfr149 pmcid: 21652737
Lin, Y.-S. & Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 132, 4834–4842 (2010).
pubmed: 20230032 doi: 10.1021/ja910846q pmcid: 20230032
Warheit, D. B., Webb, T. R., Colvin, V. L., Reed, K. L. & Sayes, C. M. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol. Sci. 95, 270–280 (2006).
pubmed: 17030555 doi: 10.1093/toxsci/kfl128 pmcid: 17030555
Naito, K., Mizuguchi, K. & Nosé, Y. The need for standardizing the index of hemolysis. Artificial Organs 18, 7–10 (1994).
pubmed: 8141660 doi: 10.1111/j.1525-1594.1994.tb03292.x pmcid: 8141660
Greven, A.-C. Polycarbonate and polystyrene nanoparticles act as stressors to the innate immune system of fathead minnows (Pimephales promelas, Rafinesque 1820), lmu, (2016).
Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine pollution bulletin 115, 217–224 (2017).
pubmed: 27964856 doi: 10.1016/j.marpolbul.2016.12.004 pmcid: 27964856
Tosti, A., Guerra, L., Vincenzi, C. & Peluso, A. M. Occupational skin hazards from synthetic plastics. Toxicology and industrial health 9, 493–502 (1993).
pubmed: 8367888 doi: 10.1177/074823379300900308 pmcid: 8367888
Lewis, S. J. & Heaton, K. W. Roughage revisited (the effect on intestinal function of inert plastic particles of different sizes and shape). Dig. Dis. Sci. 44, 744–748 (1999).
pubmed: 10219832 doi: 10.1023/A:1026613909403 pmcid: 10219832
Von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).
doi: 10.1021/es302332w
Prietl, B. et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell biology and toxicology 30, 1–16 (2014).
pubmed: 24292270 doi: 10.1007/s10565-013-9265-y pmcid: 24292270
Nicolete, R., dos Santos, D. F. & Faccioli, L. H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. International immunopharmacology 11, 1557–1563 (2011).
pubmed: 21621649 doi: 10.1016/j.intimp.2011.05.014 pmcid: 21621649
Delie, F. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Advanced drug delivery reviews 34, 221–233 (1998).
pubmed: 10837679 doi: 10.1016/S0169-409X(98)00041-6 pmcid: 10837679
Florence, A., Sakthivel, T. & Toth, I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. Journal of Controlled Release 65, 253–259 (2000).
pubmed: 10699285 doi: 10.1016/S0168-3659(99)00237-0 pmcid: 10699285
McClean, S. et al. Binding and uptake of biodegradable poly-DL-lactide micro-and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6, 153–163 (1998).
Win, K. Y. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005).
pubmed: 15585275 doi: 10.1016/j.biomaterials.2004.07.050 pmcid: 15585275
Awaad, A., Nakamura, M. & Ishimura, K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomed. Nanotechnol. Biol. Med. 8, 627–636 (2012).
doi: 10.1016/j.nano.2011.08.009
Bornstein, S., Rutkowski, H. & Vrezas, I. Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215, 135–141 (2004).
pubmed: 15026186 doi: 10.1016/j.mce.2003.11.022 pmcid: 15026186
Feuerstein, G., Liu, T. & Barone, F. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc. Brain Metab. Rev. 6, 341–360 (1994).
pubmed: 7880718 pmcid: 7880718
Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. The Journal of clinical investigation 113, 1271–1276 (2004).
pubmed: 15124018 pmcid: 398432 doi: 10.1172/JCI200420945
de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & De Vries, J. E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).
pubmed: 1940799 doi: 10.1084/jem.174.5.1209 pmcid: 1940799
Green, T., Fisher, J., Stone, M., Wroblewski, B. & Ingham, E. Polyethylene particles of a ‘critical size’are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19, 2297–2302 (1998).
pubmed: 9884043 doi: 10.1016/S0142-9612(98)00140-9 pmcid: 9884043
Shanbhag, A. S., Jacobs, J. J., Black, J., Galante, J. O. & Glant, T. T. Macrophage/particle interactions: effect of size, composition and surface area. J. Biomed. Mater. Res. 28, 81–90 (1994).
pubmed: 8126033 doi: 10.1002/jbm.820280111 pmcid: 8126033
Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).
pubmed: 26950772 doi: 10.1021/acs.est.6b00183 pmcid: 26950772
Tawfik, M. S. & BaAbdullah, H. Migration levels of monostyrene in most vulnerable foods handled and stored in polystyrene containers and their impact on the daily intake. Pakistan Journal of Food Sciences 24, 57–63 (2014).
Appendini, P. & Hotchkiss, J. H. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies 3, 113–126 (2002).
doi: 10.1016/S1466-8564(02)00012-7
Cassidy, K. & Elyashiv-Barad, S. US FDA’s revised consumption factor for polystyrene used in food-contact applications. Food additives and contaminants 24, 1026–1031 (2007).
pubmed: 17691017 doi: 10.1080/02652030701313797 pmcid: 17691017
Froget, S. et al. Wound healing mediator production by human dermal fibroblasts grown within a collagen-GAG matrix for skin repair in humans. Eur. Cytokine Netw. 14, 60–64 (2003).
pubmed: 12799215 pmcid: 12799215
Schayer, R. W. The metabolism of histamine in various species. Br. J. Pharmacol. Chemother. 11, 472–473 (1956).
pubmed: 13383131 pmcid: 1510572 doi: 10.1111/j.1476-5381.1956.tb00020.x
Steinhoff, M., Steinhoff, A., Homey, B., Luger, T. A. & Schneider, S. W. Role of vasculature in atopic dermatitis. J. Allergy Clin. Immunol. 118, 190–197 (2006).
pubmed: 16815154 doi: 10.1016/j.jaci.2006.04.025 pmcid: 16815154
Mekori, Y. A. & Metcalfe, D. D. Mast cells in innate immunity. Immunol. Rev. 173, 131–140 (2000).
pubmed: 10719674 doi: 10.1034/j.1600-065X.2000.917305.x pmcid: 10719674
Galli, S. J. et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).
pubmed: 15771585 doi: 10.1146/annurev.immunol.21.120601.141025 pmcid: 15771585
Prism, G. Graphpad software. San Diego, CA, USA (1994).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089

Auteurs

Jangsun Hwang (J)

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.

Daheui Choi (D)

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Seora Han (S)

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Se Yong Jung (SY)

Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Korea. JUNG811111@yuhs.ac.kr.

Jonghoon Choi (J)

School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea. nanomed@cau.ac.kr.

Jinkee Hong (J)

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. jinkee.hong@yonsei.ac.kr.

Classifications MeSH