Potential toxicity of polystyrene microplastic particles.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 04 2020
30 04 2020
Historique:
received:
11
09
2019
accepted:
16
04
2020
entrez:
2
5
2020
pubmed:
2
5
2020
medline:
2
5
2020
Statut:
epublish
Résumé
Environmental pollution arising from plastic waste is a major global concern. Plastic macroparticles, microparticles, and nanoparticles have the potential to affect marine ecosystems and human health. It is generally accepted that microplastic particles are not harmful or at best minimal to human health. However direct contact with microplastic particles may have possible adverse effect in cellular level. Primary polystyrene (PS) particles were the focus of this study, and we investigated the potential impacts of these microplastics on human health at the cellular level. We determined that PS particles were potential immune stimulants that induced cytokine and chemokine production in a size-dependent and concentration-dependent manner.
Identifiants
pubmed: 32355311
doi: 10.1038/s41598-020-64464-9
pii: 10.1038/s41598-020-64464-9
pmc: PMC7193629
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7391Références
Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).
pubmed: 25013051
doi: 10.1126/science.1254065
pmcid: 25013051
Dauvergne, P. The power of environmental norms: marine plastic pollution and the politics of microbeads. Environmental Politics 27, 579–597 (2018).
doi: 10.1080/09644016.2018.1449090
Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine pollution bulletin 58, 1225–1228 (2009).
pubmed: 19481226
doi: 10.1016/j.marpolbul.2009.04.025
pmcid: 19481226
Napper, I. E., Bakir, A., Rowland, S. J. & Thompson, R. C. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185 (2015).
pubmed: 26234612
doi: 10.1016/j.marpolbul.2015.07.029
pmcid: 26234612
Gregory, M. R. Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Marine pollution bulletin 32, 867–871 (1996).
doi: 10.1016/S0025-326X(96)00047-1
Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research 24, 21530–21547 (2017).
pubmed: 28815367
doi: 10.1007/s11356-017-9910-8
pmcid: 28815367
Shi, D. et al. Fluorescent polystyrene–Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Advanced Materials 21, 2170–2173 (2009).
doi: 10.1002/adma.200803159
Ryan, P. G., Moore, C. J., van Franeker, J. A. & Moloney, C. L. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364, 1999–2012 (2009).
pubmed: 19528052
doi: 10.1098/rstb.2008.0207
pmcid: 19528052
Thompson, R. et al. New directions in plastic debris. Science 310, 1117–1117 (2005).
pubmed: 16293739
doi: 10.1126/science.310.5751.1117b
pmcid: 16293739
Cheung, P. K. & Fok, L. Evidence of microbeads from personal care product contaminating the sea. Mar. Pollut. Bull. 109, 582–585 (2016).
pubmed: 27237038
doi: 10.1016/j.marpolbul.2016.05.046
pmcid: 27237038
Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts 17, 1513–1521 (2015).
Andrady, A. L. Microplastics in the marine environment. Marine pollution bulletin 62, 1596–1605 (2011).
pubmed: 21742351
doi: 10.1016/j.marpolbul.2011.05.030
pmcid: 21742351
Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).
pubmed: 26688263
pmcid: 5250697
doi: 10.1016/j.chemosphere.2015.11.078
Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific reports 6, 34351 (2016).
pubmed: 27686984
pmcid: 5043373
doi: 10.1038/srep34351
Santillo, D., Miller, K. & Johnston, P. Microplastics as contaminants in commercially important seafood species. Integrated environmental assessment and management 13, 516–521 (2017).
pubmed: 28440928
doi: 10.1002/ieam.1909
pmcid: 28440928
Smith, M., Love, D. C., Rochman, C. M. & Neff, R. A. Microplastics in seafood and the implications for human health. Current environmental health reports 5, 375–386 (2018).
pubmed: 30116998
pmcid: 6132564
doi: 10.1007/s40572-018-0206-z
Olsen, S. O. Understanding the relationship between age and seafood consumption: the mediating role of attitude, health involvement and convenience. Food quality and Preference 14, 199–209 (2003).
doi: 10.1016/S0950-3293(02)00055-1
Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environmental pollution 193, 65–70 (2014).
pubmed: 25005888
doi: 10.1016/j.envpol.2014.06.010
pmcid: 25005888
Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific reports 5, 14340 (2015).
pubmed: 26399762
pmcid: 4585829
doi: 10.1038/srep14340
Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environmental pollution 185, 77–83 (2014).
pubmed: 24220023
doi: 10.1016/j.envpol.2013.10.013
pmcid: 24220023
Storck, F. R., Kools, S. A. & Rinck-Pfeiffer, S. Microplastics in fresh water resources. Global Water Research Coalition, Stirling, South Australia, Australia (2015).
Bruck, S. & Ford, A. T. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus? Environmental pollution 233, 1125–1130 (2018).
pubmed: 29037496
doi: 10.1016/j.envpol.2017.10.015
pmcid: 29037496
Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences 113, 2430–2435 (2016).
doi: 10.1073/pnas.1519019113
Schymanski, D., Goldbeck, C., Humpf, H.-U. & Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Research 129, 154–162 (2018).
pubmed: 29145085
doi: 10.1016/j.watres.2017.11.011
pmcid: 29145085
Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water research 91, 174–182 (2016).
pubmed: 26795302
doi: 10.1016/j.watres.2016.01.002
pmcid: 26795302
Phuong, N. N. et al. Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environmental Pollution 211, 111–123 (2016).
pubmed: 26745396
doi: 10.1016/j.envpol.2015.12.035
pmcid: 26745396
Jeong, C.-B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental science & technology 50, 8849–8857 (2016).
doi: 10.1021/acs.est.6b01441
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental science & technology 52, 1704–1724 (2018).
doi: 10.1021/acs.est.7b05559
Cai, L. et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 197, 142–151 (2018).
pubmed: 29348047
doi: 10.1016/j.chemosphere.2018.01.052
pmcid: 29348047
Mattsson, K. et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports 7, 1–7 (2017).
doi: 10.1038/s41598-017-10813-0
Revel, M., Châtel, A. & Mouneyrac, C. Micro (nano) plastics: A threat to human health? Current Opinion in Environmental Science & Health 1, 17–23 (2018).
doi: 10.1016/j.coesh.2017.10.003
Sass, W., Dreyer, H.-P. & Seifert, J. Rapid insorption of small particles in the gut. American Journal of Gastroenterology 85 (1990).
Jin, Y. et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 235, 322–329 (2018).
pubmed: 29304465
doi: 10.1016/j.envpol.2017.12.088
pmcid: 29304465
Prata, J. C. Airborne microplastics: consequences to human health? Environ. Pollut. 234, 115–126 (2018).
pubmed: 29172041
doi: 10.1016/j.envpol.2017.11.043
pmcid: 29172041
Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).
pubmed: 25563688
doi: 10.1021/es504525u
pmcid: 25563688
Todd, G., Wohlers, D. & Citra, M. Agency for toxic substances and disease registry. Atlanta, GA (2003).
Leslie, H. Review of microplastics in cosmetics. Institute for Environmental Studies [IVM] 4 (2014).
Galloway, T. S. in Marine anthropogenic litter 343-366 (Springer, Cham (2015).
Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment 643, 1644–1651 (2018).
pubmed: 30104017
doi: 10.1016/j.scitotenv.2018.08.102
pmcid: 30104017
Bergmann, M., Gutow, L. & Klages, M. Marine anthropogenic litter. (Springer (2015).
Schellenberg, J. Syndiotactic polystyrene: synthesis, characterization, processing, and applications. (John Wiley & Sons (2009).
Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental science & technology 47, 11278–11283 (2013).
doi: 10.1021/es401932b
Gambardella, C. et al. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicology and environmental safety 145, 250–257 (2017).
pubmed: 28750293
doi: 10.1016/j.ecoenv.2017.07.036
pmcid: 28750293
Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Marine pollution bulletin 108, 105–112 (2016).
pubmed: 27184128
doi: 10.1016/j.marpolbul.2016.04.048
pmcid: 27184128
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70, 1–20 (2001).
doi: 10.1016/S0168-3659(00)00339-4
Hayashi, S., Kumamoto, Y., Suzuki, T. & Hirai, T. Imaging by polystyrene latex particles. J. Colloid Interface Sci. 144, 538–547 (1991).
doi: 10.1016/0021-9797(91)90419-9
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of food and drug analysis 22, 64–75 (2014).
pubmed: 24673904
doi: 10.1016/j.jfda.2014.01.005
pmcid: 24673904
Min, Y.-D. et al. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflammation Res. 56, 210–215 (2007).
doi: 10.1007/s00011-007-6172-9
Hwang, J., Choi, D., Han, S., Choi, J. & Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Science of The Total Environment 684, 657–669 (2019).
pubmed: 31158627
doi: 10.1016/j.scitotenv.2019.05.071
pmcid: 31158627
Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water research (2019).
Mason, S. A., Welch, V. G. & Neratko, J. Synthetic polymer contamination in bottled water. Frontiers in chemistry 6, 407 (2018).
pubmed: 30255015
pmcid: 6141690
doi: 10.3389/fchem.2018.00407
Conkle, J. L., Del Valle, C. D. B. & Turner, J. W. Are we underestimating microplastic contamination in aquatic environments? Environmental management 61, 1–8 (2018).
pubmed: 29043380
doi: 10.1007/s00267-017-0947-8
pmcid: 29043380
Ravit, B. et al. Microplastics in urban New Jersey freshwaters: distribution, chemical identification, and biological affects. Aims Environmental Science 4, 809–826 (2017).
doi: 10.3934/environsci.2017.6.809
Goldstein, J. L., Anderson, R. G. & Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679 (1979).
pubmed: 221835
doi: 10.1038/279679a0
pmcid: 221835
Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).
pubmed: 10358769
doi: 10.1146/annurev.immunol.17.1.593
pmcid: 10358769
Xia, T., Kovochich, M., Liong, M., Zink, J. I. & Nel, A. E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS nano 2, 85–96 (2007).
doi: 10.1021/nn700256c
He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).
pubmed: 20138662
doi: 10.1016/j.biomaterials.2010.01.065
pmcid: 20138662
Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003).
pubmed: 12527253
doi: 10.1016/S0142-9612(02)00445-3
pmcid: 12527253
Dodge, J. T., Mitchell, C. & Hanahan, D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Archives of biochemistry and biophysics 100, 119–130 (1963).
pubmed: 14028302
doi: 10.1016/0003-9861(63)90042-0
pmcid: 14028302
Sayes, C. M., Reed, K. L. & Warheit, D. B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007).
pubmed: 17301066
doi: 10.1093/toxsci/kfm018
pmcid: 17301066
Chen, H.-T., Neerman, M. F., Parrish, A. R. & Simanek, E. E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 126, 10044–10048 (2004).
pubmed: 15303879
doi: 10.1021/ja048548j
pmcid: 15303879
Blackshear, P. Jr et al. Shear, wall interaction and hemolysis. ASAIO J. 12, 113–120 (1966).
Choi, J., Reipa, V., Hitchins, V. M., Goering, P. L. & Malinauskas, R. A. Physicochemical Characterization and In V itro Hemolysis Evaluation of Silver Nanoparticles. Toxicol. Sci. 123, 133–143 (2011).
pubmed: 21652737
doi: 10.1093/toxsci/kfr149
pmcid: 21652737
Lin, Y.-S. & Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 132, 4834–4842 (2010).
pubmed: 20230032
doi: 10.1021/ja910846q
pmcid: 20230032
Warheit, D. B., Webb, T. R., Colvin, V. L., Reed, K. L. & Sayes, C. M. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol. Sci. 95, 270–280 (2006).
pubmed: 17030555
doi: 10.1093/toxsci/kfl128
pmcid: 17030555
Naito, K., Mizuguchi, K. & Nosé, Y. The need for standardizing the index of hemolysis. Artificial Organs 18, 7–10 (1994).
pubmed: 8141660
doi: 10.1111/j.1525-1594.1994.tb03292.x
pmcid: 8141660
Greven, A.-C. Polycarbonate and polystyrene nanoparticles act as stressors to the innate immune system of fathead minnows (Pimephales promelas, Rafinesque 1820), lmu, (2016).
Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine pollution bulletin 115, 217–224 (2017).
pubmed: 27964856
doi: 10.1016/j.marpolbul.2016.12.004
pmcid: 27964856
Tosti, A., Guerra, L., Vincenzi, C. & Peluso, A. M. Occupational skin hazards from synthetic plastics. Toxicology and industrial health 9, 493–502 (1993).
pubmed: 8367888
doi: 10.1177/074823379300900308
pmcid: 8367888
Lewis, S. J. & Heaton, K. W. Roughage revisited (the effect on intestinal function of inert plastic particles of different sizes and shape). Dig. Dis. Sci. 44, 744–748 (1999).
pubmed: 10219832
doi: 10.1023/A:1026613909403
pmcid: 10219832
Von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).
doi: 10.1021/es302332w
Prietl, B. et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell biology and toxicology 30, 1–16 (2014).
pubmed: 24292270
doi: 10.1007/s10565-013-9265-y
pmcid: 24292270
Nicolete, R., dos Santos, D. F. & Faccioli, L. H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. International immunopharmacology 11, 1557–1563 (2011).
pubmed: 21621649
doi: 10.1016/j.intimp.2011.05.014
pmcid: 21621649
Delie, F. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Advanced drug delivery reviews 34, 221–233 (1998).
pubmed: 10837679
doi: 10.1016/S0169-409X(98)00041-6
pmcid: 10837679
Florence, A., Sakthivel, T. & Toth, I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. Journal of Controlled Release 65, 253–259 (2000).
pubmed: 10699285
doi: 10.1016/S0168-3659(99)00237-0
pmcid: 10699285
McClean, S. et al. Binding and uptake of biodegradable poly-DL-lactide micro-and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6, 153–163 (1998).
Win, K. Y. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005).
pubmed: 15585275
doi: 10.1016/j.biomaterials.2004.07.050
pmcid: 15585275
Awaad, A., Nakamura, M. & Ishimura, K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomed. Nanotechnol. Biol. Med. 8, 627–636 (2012).
doi: 10.1016/j.nano.2011.08.009
Bornstein, S., Rutkowski, H. & Vrezas, I. Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215, 135–141 (2004).
pubmed: 15026186
doi: 10.1016/j.mce.2003.11.022
pmcid: 15026186
Feuerstein, G., Liu, T. & Barone, F. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc. Brain Metab. Rev. 6, 341–360 (1994).
pubmed: 7880718
pmcid: 7880718
Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. The Journal of clinical investigation 113, 1271–1276 (2004).
pubmed: 15124018
pmcid: 398432
doi: 10.1172/JCI200420945
de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & De Vries, J. E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).
pubmed: 1940799
doi: 10.1084/jem.174.5.1209
pmcid: 1940799
Green, T., Fisher, J., Stone, M., Wroblewski, B. & Ingham, E. Polyethylene particles of a ‘critical size’are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19, 2297–2302 (1998).
pubmed: 9884043
doi: 10.1016/S0142-9612(98)00140-9
pmcid: 9884043
Shanbhag, A. S., Jacobs, J. J., Black, J., Galante, J. O. & Glant, T. T. Macrophage/particle interactions: effect of size, composition and surface area. J. Biomed. Mater. Res. 28, 81–90 (1994).
pubmed: 8126033
doi: 10.1002/jbm.820280111
pmcid: 8126033
Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).
pubmed: 26950772
doi: 10.1021/acs.est.6b00183
pmcid: 26950772
Tawfik, M. S. & BaAbdullah, H. Migration levels of monostyrene in most vulnerable foods handled and stored in polystyrene containers and their impact on the daily intake. Pakistan Journal of Food Sciences 24, 57–63 (2014).
Appendini, P. & Hotchkiss, J. H. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies 3, 113–126 (2002).
doi: 10.1016/S1466-8564(02)00012-7
Cassidy, K. & Elyashiv-Barad, S. US FDA’s revised consumption factor for polystyrene used in food-contact applications. Food additives and contaminants 24, 1026–1031 (2007).
pubmed: 17691017
doi: 10.1080/02652030701313797
pmcid: 17691017
Froget, S. et al. Wound healing mediator production by human dermal fibroblasts grown within a collagen-GAG matrix for skin repair in humans. Eur. Cytokine Netw. 14, 60–64 (2003).
pubmed: 12799215
pmcid: 12799215
Schayer, R. W. The metabolism of histamine in various species. Br. J. Pharmacol. Chemother. 11, 472–473 (1956).
pubmed: 13383131
pmcid: 1510572
doi: 10.1111/j.1476-5381.1956.tb00020.x
Steinhoff, M., Steinhoff, A., Homey, B., Luger, T. A. & Schneider, S. W. Role of vasculature in atopic dermatitis. J. Allergy Clin. Immunol. 118, 190–197 (2006).
pubmed: 16815154
doi: 10.1016/j.jaci.2006.04.025
pmcid: 16815154
Mekori, Y. A. & Metcalfe, D. D. Mast cells in innate immunity. Immunol. Rev. 173, 131–140 (2000).
pubmed: 10719674
doi: 10.1034/j.1600-065X.2000.917305.x
pmcid: 10719674
Galli, S. J. et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).
pubmed: 15771585
doi: 10.1146/annurev.immunol.21.120601.141025
pmcid: 15771585
Prism, G. Graphpad software. San Diego, CA, USA (1994).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671 (2012).
pubmed: 22930834
pmcid: 5554542
doi: 10.1038/nmeth.2089