α-L-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides.
Enzymatic synthesis
Fucosylated human milk oligosaccharides
Trans-fucosylation
α-L-Fucosidase
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
13
03
2020
accepted:
17
04
2020
revised:
11
04
2020
pubmed:
2
5
2020
medline:
27
1
2021
entrez:
2
5
2020
Statut:
ppublish
Résumé
α-L-Fucosidases (EC 3.2.1.51), catalyzing the hydrolysis of fucosides and/or the transfer of fucosyl residue, have been characterized and modified into a trans-fucosylation mode or, further, engineered to function as "fucosynthase", which can be employed for the enzymatic synthesis of bioactive glycans, including fucosylated human milk oligosaccharides (HMOs). More than half of HMOs are fucosylated and have attracted ever-increasing interest because of their excellent physiological functions on breast-fed infants. To date, the characterization of novel fucosidases and molecular modification of these enzymes have been extensively studied to efficiently synthesize valuable fucosylated compounds. Herein, we discuss the advantages and challenges of different strategies for the production of HMOs and compare various donor/acceptor substrates used for the synthesis of fucosylated HMOs and their biomimetics. The implementation of trans-fucosylation patterns investigated in this paper via well-designed fucosidase mutants and proper reaction conditions may lead to development of an excellent platform, serving both fundamental studies and industrial-scale processes, for valuable carbohydrates synthesis.Key Points• Highlights different approaches for the production of human milk oligosaccharides.• Summarizes α-l-fucosidases and their mutants in enzymatic synthesis of fucosylated human milk oligosaccharides and the biomimetics.• Concludes future perspectives on methods for improving fucosylated compounds synthesis.• Highlights different approaches for the production of human milk oligosaccharides.• Summarizes α-l-fucosidases and their mutants in enzymatic synthesis of fucosylated human milk oligosaccharides and the biomimetics.• Concludes future perspectives on methods for improving fucosylated compounds synthesis.
Identifiants
pubmed: 32356197
doi: 10.1007/s00253-020-10635-7
pii: 10.1007/s00253-020-10635-7
doi:
Substances chimiques
Oligosaccharides
0
Fucose
28RYY2IV3F
alpha-L-Fucosidase
EC 3.2.1.51
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5619-5631Subventions
Organisme : National Natural Science Foundation of China
ID : No. 31922073
Organisme : Zhangjiagang international cooperation project
ID : No. ZKH1905
Organisme : National First-Class Discipline Program of Food Science and Technology of China
ID : JUFSTR20180203
Références
Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286(40):34583–34592. https://doi.org/10.1074/jbc.M111.248138
doi: 10.1074/jbc.M111.248138
pubmed: 21832085
pmcid: 3186357
Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K (2009) Two distinct α-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19(9):1010–1017. https://doi.org/10.1093/glycob/cwp082
doi: 10.1093/glycob/cwp082
pubmed: 19520709
Barile D, Rastall RA (2013) Human milk and related oligosaccharides as prebiotics. Curr Opin Biotechnol 24(2):214–219. https://doi.org/10.1016/j.copbio.2013.01.008
doi: 10.1016/j.copbio.2013.01.008
pubmed: 23434179
Baumgartner F, Seitz L, Sprenger GA, Albermann C (2013) Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb Cell Fact 12. https://doi.org/10.1186/1475-2859-12-40
Benesova E, Lipovova P, Dvorakova H, Kralova B (2013) α-L-Fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities. Glycobiology 23(9):1052–1065. https://doi.org/10.1093/glycob/cwt041
Bissaro B, Monsan P, Faure R, O'Donohue MJ (2015) Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 467:17–35. https://doi.org/10.1042/BJ20141412
doi: 10.1042/BJ20141412
pubmed: 25793417
Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162. https://doi.org/10.1093/glycob/cws074
doi: 10.1093/glycob/cws074
pubmed: 22513036
pmcid: 3406618
Bode L, Jantscher-Krenn E (2012) Structure-function relationships of human milk oligosaccharides. Adv Nutr 3(3):383s–391s. https://doi.org/10.3945/an.111.001404
doi: 10.3945/an.111.001404
pubmed: 22585916
pmcid: 3649474
Bode L, Contractor N, Barile D, Pohl N, Prudden AR, Boons GJ, Jin YS, Jennewein S (2016) Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev 74(10):635–644. https://doi.org/10.1093/nutrit/nuw025
doi: 10.1093/nutrit/nuw025
pubmed: 27634978
pmcid: 6281035
Boltje TJ, Buskas T, Boons GJ (2009) Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat Chem 1(8):611–622. https://doi.org/10.1038/NCHEM.399
doi: 10.1038/NCHEM.399
pubmed: 20161474
pmcid: 2794050
Bych K, Miks MH, Johanson T, Hederos MJ, Vigsnaes LK, Becker P (2019) Production of HMOs using microbial hosts - from cell engineering to large scale production. Curr Opin Biotechnol 56:130–137. https://doi.org/10.1016/j.copbio.2018.11.003
doi: 10.1016/j.copbio.2018.11.003
pubmed: 30502637
Champion E, Andreas V, Sebastian B, Dekany G (2016) Mutated Fucosidase. WO 2016/063261 A1
Chen X (2015) Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv Carbohydr Chem Biochem 72:113–190. https://doi.org/10.1016/bs.accb.2015.08.002
doi: 10.1016/bs.accb.2015.08.002
pubmed: 26613816
Chin YW, Seo N, Kim JH, Seo JH (2016) Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5′-diphosphate (GDP)-L-fucose. Biotechnol Bioeng 113(11):2443–2452. https://doi.org/10.1002/bit.26015
doi: 10.1002/bit.26015
pubmed: 27217241
Choi YH, Kim JH, Park BS, Kim BG (2016) Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol Bioeng 113(8):1666–1675. https://doi.org/10.1002/bit.25944
doi: 10.1002/bit.25944
pubmed: 26804479
Choi YH, Park BS, Seo JH, Kim BG (2019) Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and β-galactosidase modification. Biotechnol Bioeng 116(12):3324–3332. https://doi.org/10.1002/bit.27160
doi: 10.1002/bit.27160
pubmed: 31478191
Cobucci-Ponzano B, Conte F, Bedini E, Corsaro MM, Parrilli M, Sulzenbacher G, Lipski A, Dal Piaz F, Lepore L, Rossi M, Moracci M (2009) β-Glycosyl azides as substrates for α-glycosynthases: preparation of efficient α-L-fucosynthases. Chem Biol 16(10):1097–1108. https://doi.org/10.1016/j.chembiol.2009.09.013
doi: 10.1016/j.chembiol.2009.09.013
pubmed: 19875083
Cobucci-Ponzano B, Strazzulli A, Rossi M, Moracci M (2011) Glycosynthases in biocatalysis. Adv Synth Catal 353(13):2284–2300. https://doi.org/10.1002/adsc.201100461
doi: 10.1002/adsc.201100461
Craft KM, Townsend SD (2019) Mother knows best: deciphering the antibacterial properties of human milk oligosaccharides. Accounts Chem Res 52(3):760–768. https://doi.org/10.1021/acs.accounts.8b00630
doi: 10.1021/acs.accounts.8b00630
Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11(7):1784–1794. https://doi.org/10.1021/acschembio.6b00340
doi: 10.1021/acschembio.6b00340
pubmed: 27176929
Deng J, Chen C, Gu Y, Lv X, Liu Y, Li J, Ledesma-Amaro R, Du G, Liu L (2019a) Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metab Eng 55:179–190. https://doi.org/10.1016/j.ymben.2019.07.008
doi: 10.1016/j.ymben.2019.07.008
pubmed: 31336181
Deng J, Gu L, Chen T, Huang H, Yin X, Lv X, Liu Y, Li N, Liu Z, Li J, Du G, Liu L (2019b) Engineering the substrate transport and cofactor regeneration systems for enhancing 2′-fucosyllactose synthesis in Bacillus subtilis. ACS Synth Biol 8(10):2418–2427. https://doi.org/10.1021/acssynbio.9b00314
doi: 10.1021/acssynbio.9b00314
pubmed: 31550146
Dierksen KP, Trempy JE (1996) Identification of a second RcsA protein, a positive regulator of colanic acid capsular polysaccharide genes, in Escherichia coli. J Bacteriol 178(16):5053–5056. https://doi.org/10.1128/jb.178.16.5053-5056.1996
doi: 10.1128/jb.178.16.5053-5056.1996
pubmed: 8759878
pmcid: 178297
Dong X, Li N, Liu Z, Lv X, Li J, Du G, Wang M, Liu L (2019) Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnol Biofuels 12:212. https://doi.org/10.1186/s13068-019-1551-3
doi: 10.1186/s13068-019-1551-3
pubmed: 31516551
pmcid: 6732834
Elison E, Vigsnaes LK, Krogsgaard LR, Rasmussen J, Sorensen N, McConnell B, Hennet T, Sommer MOA, Bytzer P (2016) Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr 116(8):1356–1368. https://doi.org/10.1017/S0007114516003354
doi: 10.1017/S0007114516003354
pubmed: 27719686
pmcid: 5082288
Eneyskaya EV, Kulminskaya AA, Kalkkinen N, Nifantiev NE, Arbatskii NP, Saenko AI, Chepurnaya OV, Arutyunyan AV, Shabalin KA, Neustroev KN (2001) An α-L-fucosidase from Thermus sp. with unusually broad specificity. Glycoconj J 18(10):827–834. https://doi.org/10.1023/A:1021163720282
doi: 10.1023/A:1021163720282
pubmed: 12441672
Engels L, Elling L (2014) WbgL: a novel bacterial α1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose. Glycobiology 24(2):170–178. https://doi.org/10.1093/glycob/cwt096
doi: 10.1093/glycob/cwt096
pubmed: 24249735
Escamilla-Lozano Y, Guzman-Rodriguez F, Alatorre-Santamaria S, Garcia-Garibay M, Gomez-Ruiz L, Rodriguez-Serrano G, Cruz-Guerrero A (2019) Synthesis of fucosyl-oligosaccharides using α-L-fucosidase from Lactobacillus rhamnosus GG. Molecules 24(13). https://doi.org/10.3390/molecules24132402
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A (2019) Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 37(5):667–697. https://doi.org/10.1016/j.biotechadv.2019.03.014
doi: 10.1016/j.biotechadv.2019.03.014
pubmed: 30935964
Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, Ugalde JA, German JB, Lebrilla CB, Mills DA (2016) A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep-UK 6. https://doi.org/10.1038/srep35045
Guzman-Rodriguez F, Alatorre-Santamaria S, Gomez-Ruiz L, Garcia-Gariba GRSM, Cruz-Guerrero A (2018) Synthesis of a fucosylated trisaccharide via transglycosylation by α-L-Fucosidase from Thermotoga maritima. Appl Biochem Biotechnol 186(3):681–691. https://doi.org/10.1007/s12010-018-2771-x
doi: 10.1007/s12010-018-2771-x
pubmed: 29717409
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A (2019) Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential. Biotechnol Appl Biochem 66(2):172–191. https://doi.org/10.1002/bab.1714
doi: 10.1002/bab.1714
pubmed: 30508310
Han NS, Kim TJ, Park YC, Kim J, Seo JH (2012) Biotechnological production of human milk oligosaccharides. Biotechnol Adv 30(6):1268–1278. https://doi.org/10.1016/j.biotechadv.2011.11.003
doi: 10.1016/j.biotechadv.2011.11.003
pubmed: 22119239
Hayes MR, Pietruszka J (2017) Synthesis of glycosides by glycosynthases. Molecules 22(9). https://doi.org/10.3390/molecules22091434
Hill DR, Newburg DS (2015) Clinical applications of bioactive milk components. Nutr Rev 73(7):463–476. https://doi.org/10.1093/nutrit/nuv009
doi: 10.1093/nutrit/nuv009
pubmed: 26011900
pmcid: 4560033
Hollands K, Baron CM, Gibson KJ, Kelly KJ, Krasley EA, Laffend LA, Lauchli RM, Maggio-Hall LA, Nelson MJ, Prasad JC, Ren Y, Rice BA, Rice GH, Rothman SC (2019) Engineering two species of yeast as cell factories for 2′-fucosyllactose. Metab Eng 52:232–242. https://doi.org/10.1016/j.ymben.2018.12.005
doi: 10.1016/j.ymben.2018.12.005
pubmed: 30557615
Honda Y, Fushinobu S, Hidaka M, Wakagi T, Shoun H, Taniguchi H, Kitaoka M (2008) Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase. Glycobiology 18(4):325–330. https://doi.org/10.1093/glycob/cwn011
doi: 10.1093/glycob/cwn011
pubmed: 18263897
Huang D, Yang K, Liu J, Xu Y, Wang Y, Wang R, Liu B, Feng L (2017) Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng 41:23–38. https://doi.org/10.1016/j.ymben.2017.03.001
doi: 10.1016/j.ymben.2017.03.001
pubmed: 28286292
Huang HH, Fang JL, Wang HK, Sun CY, Tsai TW, Huang YT, Kuo CY, Wang YJ, Liao CC, Yu CC (2019) Substrate characterization of Bacteroides fragilis α1,3/4-fucosyltransferase enabling access to programmable one-pot enzymatic synthesis of KH-1 antigen. ACS Catal 9(12):11794–11800. https://doi.org/10.1021/acscatal.9b04182
doi: 10.1021/acscatal.9b04182
Jung SM, Chin YW, Lee YG, Seo JH (2019) Enhanced production of 2′-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli. Biotechnol Bioeng 116(9):2412–2417. https://doi.org/10.1002/bit.27019
doi: 10.1002/bit.27019
pubmed: 31145478
Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–653. https://doi.org/10.1146/annurev.biochem.77.070606.100917
doi: 10.1146/annurev.biochem.77.070606.100917
pubmed: 20380561
Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28(4):416–436. https://doi.org/10.1111/j.1469-185X.1953.tb01386.x
doi: 10.1111/j.1469-185X.1953.tb01386.x
Krasnova L, Wong CH (2016) Understanding the chemistry and biology of glycosylation with glycan synthesis. Annu Rev Biochem 85:599–630. https://doi.org/10.1146/annurev-biochem-060614-034420
doi: 10.1146/annurev-biochem-060614-034420
pubmed: 27145845
Lee WH, Han NS, Park YC, Seo JH (2009) Modulation of guanosine 5′-diphosphate-D-mannose metabolism in recombinant Escherichia coli for production of guanosine 5′-diphosphate-L-fucose. Bioresour Technol 100(24):6143–6148. https://doi.org/10.1016/j.biortech.2009.07.035
doi: 10.1016/j.biortech.2009.07.035
pubmed: 19692232
Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD (2016) Novel α-L-Fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS One 11(1). https://doi.org/10.1371/journal.pone.0147438
Li C, Zhu S, Ma C, Wang LX (2017) Designer α1, 6-fucosidase mutants enable direct core fucosylation of intact N-glycopeptides and N-glycoproteins. J Am Chem Soc 139(42):15074–15087. https://doi.org/10.1021/jacs.7b07906
doi: 10.1021/jacs.7b07906
pubmed: 28990779
pmcid: 5695864
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. https://doi.org/10.1093/nar/gkt1178
doi: 10.1093/nar/gkt1178
pubmed: 24270786
pmcid: 3965031
Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, Farkas T, Chaturvedi P, Pickering LK, Newburg DS (2004) Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 145(3):297–303. https://doi.org/10.1016/j.jpeds.2004.04.054
doi: 10.1016/j.jpeds.2004.04.054
pubmed: 15343178
Murata T, Morimoto S, Zeng X, Watanabe S, Usui T (1999) Enzymatic synthesis of α-L-fucosyl-N-acetyllactosamines and 3′-O-α-L-fucosyllactose utilizing α-L-fucosidases. Carbohydr Res 320(3–4):192–199. https://doi.org/10.1016/S0008-6215(99)00156-1
doi: 10.1016/S0008-6215(99)00156-1
pubmed: 10573857
Myron P, Siddiquee S, Al Azad S (2014) Fucosylated chondroitin sulfate diversity in sea cucumbers: a review. Carbohyd Polym 112:173–178. https://doi.org/10.1016/j.carbpol.2014.05.091
doi: 10.1016/j.carbpol.2014.05.091
Navasa N, Rodríguez-Aparicio L, Ferrero MÁ, Monteagudo-Mera A, Martínez-Blanco H (2013) Polysialic and colanic acids metabolism in Escherichia coli K92 is regulated by RcsA and RcsB. Biosci Rep 33(3). https://doi.org/10.1042/BSR20130018
Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O’Neill MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, Gilbert HJ (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544(7648):65–70. https://doi.org/10.1038/nature21725
doi: 10.1038/nature21725
pubmed: 28329766
pmcid: 5388186
Nidetzky B, Gutmann A, Zhong C (2018) Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal 8(7):6283–6300. https://doi.org/10.1021/acscatal.8b00710
doi: 10.1021/acscatal.8b00710
Ohnuma T, Fukuda T, Dozen S, Honda Y, Kitaoka M, Fukamizo T (2012) A glycosynthase derived from an inverting GH19 Chitinase from the moss Bryum coronatum. Biochem J 444:437–443. https://doi.org/10.1042/BJ20120036
Osanjo G, Dion M, Drone J, Solleux C, Tran V, Rabiller C, Tellier C (2007) Directed evolution of the α-L-fucosidase from Thermotoga maritima into an α-L-transfucosidase. Biochemistry 46(4):1022–1033. https://doi.org/10.1021/bi061444w
doi: 10.1021/bi061444w
pubmed: 17240986
Palcic MM (2011) Glycosyltransferases as biocatalysts. Curr Opin Chem Biol 15(2):226–233. https://doi.org/10.1016/j.cbpa.2010.11.022
doi: 10.1016/j.cbpa.2010.11.022
pubmed: 21334964
Paper JM, Scott-Craig JS, Cavalier D, Faik A, Wiemels RE, Borrusch MS, Bongers M, Walton JD (2013) α-Fucosidases with different substrate specificities from two species of Fusarium. Appl Microbiol Biotechnol 97(12):5371–5380. https://doi.org/10.1007/s00253-012-4423-3
doi: 10.1007/s00253-012-4423-3
pubmed: 23011349
Prabasari I, Pettolino F, Liao ML, Bacic A (2011) Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: sequential extraction and chemical characterization. Carbohydr Polym 84(1):484–494. https://doi.org/10.1016/j.carbpol.2010.12.012
doi: 10.1016/j.carbpol.2010.12.012
Prudden AR, Liu L, Capicciotti CJ, Wolfert MA, Wang S, Gao ZW, Meng L, Moremen KW, Boons GJ (2017) Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc Natl Acad Sci U S A 114(27):6954–6959. https://doi.org/10.1073/pnas.1701785114
doi: 10.1073/pnas.1701785114
pubmed: 28630345
pmcid: 5502611
Rodríguez-Díaz J, Monedero V, Yebra MJ (2011) Utilization of natural fucosylated oligosaccharides by three novel α-L-fucosidases from a probiotic Lactobacillus casei strain. Appl Environ Microbiol 77(2):703–705. https://doi.org/10.1128/aem.01906-10
doi: 10.1128/aem.01906-10
pubmed: 21097595
Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, Urashima T, Xiao JZ, Kitaoka M, Fukiya S, Yokota A, Lo Leggio L, Abou Hachem M, Katayama T (2019) Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 5(8):eaaw7696. https://doi.org/10.1126/sciadv.aaw7696
doi: 10.1126/sciadv.aaw7696
pubmed: 31489370
pmcid: 6713505
Sakurama H, Fushinobu S, Hidaka M, Yoshida E, Honda Y, Ashida H, Kitaoka M, Kumagai H, Yamamoto K, Katayama T (2012) 1,3-1,4-α-L-Fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem 287(20):16709–16719. https://doi.org/10.1074/jbc.m111.333781
doi: 10.1074/jbc.m111.333781
pubmed: 22451675
pmcid: 3351332
Saumonneau A, Champion E, Peltier-Pain P, Molnar-Gabor D, Hendrickx J, Tran V, Hederos M, Dekany G, Tellier C (2016) Design of an α-L-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology 26(3):261–269. https://doi.org/10.1093/glycob/cwv099
doi: 10.1093/glycob/cwv099
pubmed: 26582607
Schneider M, Al-Shareffi E, Haltiwanger RS (2017) Biological functions of fucose in mammals. Glycobiology 27(7):601–618. https://doi.org/10.1093/glycob/cwx034
doi: 10.1093/glycob/cwx034
pubmed: 28430973
pmcid: 5458543
Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, Mills DA (2012) Bifidobacterium longum subsp. infantis ATCC 15697 α-Fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 78(3):795–803. https://doi.org/10.1128/aem.06762-11
doi: 10.1128/aem.06762-11
pubmed: 22138995
pmcid: 3264123
Seo J, Chin Y, Jo H (2017) Method for producing 2′-fucosyllactose by using Corynebacterium glutamicum. WO2017188684
Shaikh FA, Lammerts van Bueren A, Davies GJ, Withers SG (2013) Identifying the catalytic acid/base in GH 29 α-L-fucosidase subfamilies. Biochemistry 52(34):5857–5864. https://doi.org/10.1021/bi400183q
doi: 10.1021/bi400183q
pubmed: 23883131
Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 34(1):143–169. https://doi.org/10.1146/annurev-nutr-071813-105721
doi: 10.1146/annurev-nutr-071813-105721
pubmed: 24850388
pmcid: 4348064
Sprenger GA, Baumgartner F, Albermann C (2017) Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 258:79–91. https://doi.org/10.1016/j.jbiotec.2017.07.030
doi: 10.1016/j.jbiotec.2017.07.030
pubmed: 28764968
Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, Ashida H, Kumagai H, Yamamoto K, Kitaoka M, Katayama T (2016a) Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-L-fucosynthase. Glycobiology 26(11):1235–1247. https://doi.org/10.1093/glycob/cww085
doi: 10.1093/glycob/cww085
pubmed: 27550195
Sugiyama Y, Katoh T, Honda Y, Gotoh A, Ashida H, Kurihara S, Yamamoto K, Katayama T (2016b) Application study of 1,2-α-L-fucosynthase: introduction of Fucα1-2Gal disaccharide structures on N-glycan, ganglioside, and xyloglucan oligosaccharide. Biosci Biotechnol Biochem 81(2):283–291. https://doi.org/10.1080/09168451.2016.1254532
doi: 10.1080/09168451.2016.1254532
pubmed: 27832720
Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, Bourne Y (2004) Crystal structure of Thermotoga maritima α-L-Fucosidase - insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem 279(13):13119–13128. https://doi.org/10.1074/jbc.m313783200
doi: 10.1074/jbc.m313783200
pubmed: 14715651
Tan Y, Zhang Y, Han Y, Liu H, Chen H, Ma F, Withers SG, Feng Y, Yang G (2019) Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Sci Adv 5(10). https://doi.org/10.1126/sciadv.aaw8451
Teze D, Daligault F, Ferrieres V, Sanejouand YH, Tellier C (2015) Semi-rational approach for converting a GH 36 α-glycosidase into an α-transglycosidase. Glycobiology 25(4):420–427. https://doi.org/10.1093/glycob/cwu124
doi: 10.1093/glycob/cwu124
pubmed: 25395404
Totten SM, Wu LD, Parker EA, Davis JCC, Hua S, Stroble C, Ruhaak LR, Smilowitz JT, German JB, Lebrilla CB (2014) Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Anal Bioanal Chem 406(30):7925–7935. https://doi.org/10.1007/s00216-014-8261-2
doi: 10.1007/s00216-014-8261-2
pubmed: 25358913
Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Martinez-Lara E, Blanco S, Martin MJ, Castanys E, Buck R, Prieto P, Rueda R (2015) Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 26(5):455–465. https://doi.org/10.1016/j.jnutbio.2014.11.016
doi: 10.1016/j.jnutbio.2014.11.016
pubmed: 25662731
Wada J, Honda Y, Nagae M, Kato R, Wakatsuki S, Katayama T, Taniguchi H, Kumagai H, Kitaoka M, Yamamoto K (2008) 1,2-α-L-Fucosynthase: a glycosynthase derived from an inverting α-glycosidase with an unusual reaction mechanism. FEBS Lett 582(27):3739–3743. https://doi.org/10.1016/j.febslet.2008.09.054
doi: 10.1016/j.febslet.2008.09.054
pubmed: 18845150
Wang L-X, Davis BG (2013) Realizing the promise of chemical glycobiology. Chem Sci 4(9):3381. https://doi.org/10.1039/c3sc50877c
doi: 10.1039/c3sc50877c
pubmed: 23914294
pmcid: 3731165
Weichert S, Jennewein S, Hufner E, Weiss C, Borkowski J, Putze J, Schroten H (2013) Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res 33(10):831–838. https://doi.org/10.1016/j.nutres.2013.07.009
doi: 10.1016/j.nutres.2013.07.009
pubmed: 24074741
Xiao L, Worp WR, Stassen R, Maastrigt C, Kettelarij N, Stahl B, Blijenberg B, Overbeek SA, Folkerts G, Garssen J, Van’T Land B (2019) Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells. Eur J Immunol 49(7):1001–1014. https://doi.org/10.1002/eji.201847971
doi: 10.1002/eji.201847971
pubmed: 30900752
pmcid: 6619030
Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, Fushinobu S (2017) Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem Biol 24(4):515. https://doi.org/10.1016/j.chembiol.2017.03.012
doi: 10.1016/j.chembiol.2017.03.012
pubmed: 28392148
Yi W, Liu XW, Li YH, Li JJ, Xia CF, Zhou GY, Zhang WP, Zhao W, Chen X, Wang PG (2009) Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc Natl Acad Sci U S A 106(11):4207–4212. https://doi.org/10.1073/pnas.0812432106
doi: 10.1073/pnas.0812432106
pubmed: 19251666
pmcid: 2657399
Yu J, Shin J, Park M, Seydametova E, Jung SM, Seo JH, Kweon DH (2018a) Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli. Metab Eng 48:269–278. https://doi.org/10.1016/j.ymben.2018.05.021
doi: 10.1016/j.ymben.2018.05.021
pubmed: 29870790
Yu S, Liu JJ, Yun EJ, Kwak S, Kim KH, Jin YS (2018b) Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 17. https://doi.org/10.1186/s12934-018-0947-2
Zeuner B, Jers C, Mikkelsen JD, Meyer AS (2014) Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. J Agric Food Chem 62(40):9615–9631. https://doi.org/10.1021/jf502619p
doi: 10.1021/jf502619p
pubmed: 25208138
Zeuner B, Muschiol J, Holck J, Lezyk M, Gedde MR, Jers C, Mikkelsen JD, Meyer AS (2018a) Substrate specificity and transfucosylation activity of GH 29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnol 41:34–45. https://doi.org/10.1016/j.nbt.2017.12.002
doi: 10.1016/j.nbt.2017.12.002
Zeuner B, Vuillemin M, Holck J, Muschiol J, Meyer AS (2018b) Loop engineering of an α-1,3/4-L-fucosidase for improved synthesis of human milk oligosaccharides. Enzym Microb Technol 115:37–44. https://doi.org/10.1016/j.enzmictec.2018.04.008
doi: 10.1016/j.enzmictec.2018.04.008