Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha.
Animals
Antimycin A
/ pharmacology
Bronchi
/ innervation
Lung
/ innervation
Mice
Nerve Fibers, Unmyelinated
/ drug effects
Neurons
/ drug effects
Nodose Ganglion
/ cytology
Protein Isoforms
/ drug effects
Protein Kinase C
/ drug effects
Protein Kinase C-alpha
/ drug effects
TRPV Cation Channels
/ metabolism
Vagus Nerve
Antimycin A
Hyperexcitability
Mitochondria
Nociceptor
PKC isoform
Vagal
Journal
Respiratory physiology & neurobiology
ISSN: 1878-1519
Titre abrégé: Respir Physiol Neurobiol
Pays: Netherlands
ID NLM: 101140022
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
11
03
2020
revised:
15
04
2020
accepted:
18
04
2020
pubmed:
4
5
2020
medline:
5
10
2021
entrez:
4
5
2020
Statut:
ppublish
Résumé
Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCβ1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCβ2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,β-methylene ATP. Selective inhibition of PKCα, PKCβ1 and PKCβ2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCβ1 and PKCβ2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.
Identifiants
pubmed: 32360368
pii: S1569-9048(20)30104-X
doi: 10.1016/j.resp.2020.103446
pmc: PMC7310992
mid: NIHMS1593549
pii:
doi:
Substances chimiques
Protein Isoforms
0
TRPV Cation Channels
0
TRPV1 protein, mouse
0
Antimycin A
642-15-9
Protein Kinase C
EC 2.7.11.13
Protein Kinase C-alpha
EC 2.7.11.13
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
103446Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL119802
Pays : United States
Informations de copyright
Copyright © 2020 Elsevier B.V. All rights reserved.
Références
J Biol Chem. 2006 Jul 28;281(30):20801-8
pubmed: 16720572
J Biol Chem. 2002 Sep 20;277(38):35752-9
pubmed: 12095983
J Neurosci. 2007 Jul 18;27(29):7777-85
pubmed: 17634371
J Physiol. 2005 Sep 15;567(Pt 3):851-67
pubmed: 16002450
Mol Pharmacol. 2013 May;83(5):1007-19
pubmed: 23444014
Life Sci. 2005 Nov 19;78(1):47-53
pubmed: 16111720
Curr Med Chem. 2010;17(32):3827-41
pubmed: 20858217
J Appl Physiol (1985). 2006 Aug;101(2):618-27
pubmed: 16645192
J Ultrastruct Res. 1973 Jun;43(5):426-37
pubmed: 4578329
Respir Physiol Neurobiol. 2009 May 30;167(1):26-35
pubmed: 18586581
Circulation. 1999 Aug 31;100(9):967-73
pubmed: 10468528
Am J Respir Cell Mol Biol. 2001 Jun;24(6):762-8
pubmed: 11415943
Br J Anaesth. 2007 Nov;99(5):639-45
pubmed: 17905752
PLoS One. 2017 Oct 5;12(10):e0185985
pubmed: 28982197
Circ Res. 2010 Apr 30;106(8):1319-31
pubmed: 20431074
Curr Opin Pharmacol. 2015 Jun;22:9-17
pubmed: 25704498
J Appl Physiol (1985). 2016 Mar 15;120(6):580-91
pubmed: 26718787
Pharmaceuticals (Basel). 2011 Feb 25;4(3):429-456
pubmed: 21461182
Biochem J. 2013 Jun 1;452(2):195-209
pubmed: 23662807
Mol Pharmacol. 2014 Jun;85(6):839-48
pubmed: 24642367
Neuron. 1999 Jul;23(3):617-24
pubmed: 10433272
Cell Rep. 2019 May 21;27(8):2508-2523.e4
pubmed: 31116992
Arch Biochem Biophys. 1985 Mar;237(2):408-14
pubmed: 2983613
Pain. 2005 Sep;117(1-2):171-81
pubmed: 16099101
Pharmacol Res. 2007 Jun;55(6):545-59
pubmed: 17582782
Pain. 2016 Jul;157(7):1541-50
pubmed: 26963850
J Clin Invest. 2012 Apr;122(4):1306-15
pubmed: 22426212
Am J Physiol Renal Physiol. 2009 Nov;297(5):F1399-410
pubmed: 19692488
Neurobiol Dis. 2013 Mar;51:56-65
pubmed: 22446165
J Physiol. 2004 May 1;556(Pt 3):905-17
pubmed: 14978204
Nature. 2011 Apr 28;472(7344):476-80
pubmed: 21525932
Mol Neurobiol. 2020 Feb;57(2):949-963
pubmed: 31630330
Am J Physiol. 1998 Jun;274(6):G978-83
pubmed: 9696720
Antioxid Redox Signal. 2009 Jun;11(6):1373-414
pubmed: 19187004
Biochem Pharmacol. 2015 Nov 1;98(1):29-40
pubmed: 26300055
Neuropharmacology. 2007 Mar;52(3):904-24
pubmed: 17140607
Exp Neurol. 2005 Jul;194(1):279-83
pubmed: 15899264
Brain Res. 2019 Jul 15;1715:94-105
pubmed: 30914247
Mol Cell. 2012 Oct 26;48(2):158-67
pubmed: 23102266
Int J Mol Sci. 2012;13(9):10697-721
pubmed: 23109817
Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11233-7
pubmed: 9326592
Pain. 2018 Nov;159(11):2383-2393
pubmed: 30015706
Physiol Rev. 2016 Jul;96(3):975-1024
pubmed: 27279650
PLoS One. 2018 May 7;13(5):e0197106
pubmed: 29734380
J Cell Biochem. 2020 Jan;121(1):768-778
pubmed: 31385361
J Allergy Clin Immunol. 2014 Jun;133(6):1521-34
pubmed: 24433703
Pain. 2010 Jul;150(1):17-21
pubmed: 20456866
eNeuro. 2020 Apr 9;7(2):
pubmed: 32060036
Prog Brain Res. 1988;74:139-54
pubmed: 3055045
J Cell Biol. 2007 Jun 18;177(6):1029-36
pubmed: 17562787
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11515-20
pubmed: 25049382
Respir Physiol Neurobiol. 2015 Jul;212-214:20-4
pubmed: 25842220
Nat Neurosci. 2015 Jan;18(1):145-53
pubmed: 25420068
Respir Physiol Neurobiol. 2006 Jul 28;152(3):298-311
pubmed: 16338180
J Biol Chem. 2000 Aug 4;275(31):24136-45
pubmed: 10823825
J Lipid Res. 2019 Sep;60(9):1573-1589
pubmed: 31363041
J Physiol. 2003 Sep 15;551(Pt 3):869-79
pubmed: 12909686
Trends Pharmacol Sci. 2000 May;21(5):181-7
pubmed: 10785652
Nat Biotechnol. 2011 Oct 30;29(11):1039-45
pubmed: 22037377
J Physiol. 2010 Dec 1;588(Pt 23):4769-83
pubmed: 20937710