Accurate closed-form solution of the SIR epidemic model.

Analytic solution Approximant Asymptotic analysis SIR model

Journal

Physica D. Nonlinear phenomena
ISSN: 0167-2789
Titre abrégé: Physica D
Pays: Netherlands
ID NLM: 9890573

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 20 04 2020
revised: 24 04 2020
accepted: 27 04 2020
pubmed: 5 5 2020
medline: 5 5 2020
entrez: 5 5 2020
Statut: ppublish

Résumé

An accurate closed-form solution is obtained to the SIR Epidemic Model through the use of Asymptotic Approximants (Barlow et al., 2017). The solution is created by analytically continuing the divergent power series solution such that it matches the long-time asymptotic behavior of the epidemic model. The utility of the analytical form is demonstrated through its application to the COVID-19 pandemic.

Identifiants

pubmed: 32362697
doi: 10.1016/j.physd.2020.132540
pii: S0167-2789(20)30269-4
pii: 132540
pmc: PMC7195136
doi:

Types de publication

Journal Article

Langues

eng

Pagination

132540

Informations de copyright

© 2020 Elsevier B.V. All rights reserved.

Références

J Chem Phys. 2012 Nov 28;137(20):204102
pubmed: 23205976
J Chem Phys. 2015 Aug 21;143(7):071103
pubmed: 26298108

Auteurs

Nathaniel S Barlow (NS)

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.

Steven J Weinstein (SJ)

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.

Classifications MeSH