Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells.
cell adhesion
cell migration
mesenchymal stem cells
protein adsorption
titania nanotubes
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
01 11 2020
01 11 2020
Historique:
received:
28
11
2019
revised:
28
03
2020
accepted:
04
04
2020
pubmed:
5
5
2020
medline:
9
11
2021
entrez:
5
5
2020
Statut:
ppublish
Résumé
Migration and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is an important biological process in tissue regeneration. Nanostructured titanium materials are believed to play a fundamental role in dental and orthopedic applications. However, the protein adsorption on nanostructured titanium materials and its correlation with the subsequent cell behaviors have not been studied. In this work, the titania nanotube arrays with different tubular diameters ranging from 27.3 to 88.2 nm were fabricated by using an electrochemical etching method. The adsorbed amounts and types of cell adhesion-related proteins (such as fibronectin, vitronectin, and laminin) from serum were investigated, revealing that these proteins were preferred to bind onto the surface with nanotubes of a smaller diameter. Adhesion and migration of BMSCs were studied as a function of different nanotube diameters in the presence or absence of serum proteins. Compared with the nanotube surface with a larger tubular diameter (88.2 nm), the surface with a smaller one could better support BMSCs in terms of adhesion and spreading. The pre-adsorbed serum proteins significantly enhanced adhesion and migration abilities of BMSCs. However, the adequate interactions between cells and serum proteins on the nanotubes surface with smallest nanotubes in diameter weakened cell mobility. Arrangement of cytoskeleton and expressions of key genes and proteins were studied, revealing that the nanostructured surfaces and pre-adsorbed proteins jointly mediated the adhesion and migration of BMSCs.
Substances chimiques
Biocompatible Materials
0
Blood Proteins
0
titanium dioxide
15FIX9V2JP
Titanium
D1JT611TNE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2305-2318Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Alblas, J., Ulfman, L., Hordijk, P., & Koenderman, L. (2001). Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Molecular Biology of the Cell, 12, 2137-2145.
Bernstein, L. R., & Liotta, L. A. (1994). Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Current Opinion in Oncology, 6, 106-113.
Blumenstein, L., & Ahmadian, M. R. (2004). Models of the cooperative mechanism for rho effector recognition - implications for RhoA-mediated effector activation. The Journal of Biological Chemistry, 279, 53419-53426.
Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167-179.
Caroni, P. (2014). New EMBO members’ review Actin cytoskeleton regulation through modulation of PI45P2 rafts. The EMBO Journal, 20, 4332-4336.
Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review mesenchymal stem cells their phenotype differentiation capacity immunological features and potential for homing. Stem Cells, 25, 2739-2749.
Chen, M. H., Hu, Y., Li, M. H., Chen, M. W., Shen, X. K., Luo, Z., … Cai, K. Y. (2019). Regulation of osteoblast differentiation by osteocytes cultured on sclerostin antibody conjugated TiO2 nanotube array. Colloids and Surfaces B, 175, 663-670.
Chen XY, Cai KY, Fang JJ, Lai M, Hou YH, Li JH, Zhong L, Hu Y, TangLL. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids and Surfaces B2013;103:149-157.
Crane, G. M., Ishaug, S. L., & Mikos, A. G. (1995). Bone tissue engineering. Nature Medicine, 1, 1322-1324.
Deng, J., Zheng, H., & Gao, C. Y. (2016). Influence of protein adsorption on the cellular uptake of AuNPs conjugated with chiral oligomers. Materials Chemistry Frontiers, 1, 542-549.
Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629-635.
Forsgren, J., Svahn, F., Jarmar, T., & Engqvist, H. (2007). Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomaterialia, 3, 980-984.
Gattazzo, F., Urciuolo, A., & Bonaldo, P. (1840). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 2014, 2506-2519.
Godwin, J. W., & Brockes, J. P. (2006). Regeneration tissue injury and the immune response. Journal of Anatomy, 209, 423-432.
Goode, B. L., & Eck, M. J. (2007). Mechanism and function of formins in the control of Actin assembly. Annual Review of Biochemistry, 76, 593-627.
Griffith, B. P., Kormos, R. L., Borovetz, H. S., Litwak, K., Antaki, J. F., Poirier, V. L., & Butler, K. C. (2001). HeartMate II left ventricular assist system from concept to first clinical use. Annals of Thoracic Surgery, 71, S116-S120.
Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295, 1014-1017.
Hynes, R. O. (2002). Integrins bidirectional allosteric signaling machines. Cell, 110, 110673-110687.
Itoh, R. E., Kurokaw, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., & Matsuda, M. (2002). Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-basedsingle-molecule probes in the membrane of living cells. Molecular and Cellular Biology, 22, 6582-6591.
Kilian, K. A., Branimir, B., Lahn, B. T., & Milan, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 10711, 4872-4877.
Kirsi, R., & Anne, J. (2003). Rocks multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology, 46, 446-456.
Lai, M., Cai, K., Zhao, L., Chen, X., Hou, Y., & Yang, Z. (2011). Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of Mesenchymal stem cells. Biomacromolecules, 12, 1097-1105.
Le, C. C., & Carlier, M. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological Reviews, 88, 489.
Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23, 844-854.
Li, D., Ye, C., Zhu, Y., Qi, Y., Gou, Z. R., & Gao, C. Y. (2012). Fabrication of poly lactide-co-glycolide scaffold embedded spatially with hydroxyapatite particles on pore walls for bone tissue engineering. Polymers for Advanced Technologies, 23, 1446-1453.
Liu, Z., Ma, S., Duan, S., Deng, X., Sun, Y., Zhang, X., … Gao, P. (2016). Modification of titanium substrates with chimeric peptides comprising antimicrobial and titanium-binding motifs connected by linkers to inhibit biofilm formation. ACS Applied Materials & Interfaces, 88, 5124-5136.
Lu, R., Wang, C., Wang, X., Wang, Y., Wang, N., Chou, J., … Chen, S. (2018). Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells. International Journal of Nanomedicine, 13, 2037-2049.
Mano, J., Silva, G., Azevedo, H. S., Malafaya, P., Sousa, R., Silva, S. S., … Marques, A. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine, present status and some moving trends. Journal of the Royal Society Interface, 4, 999-1030.
Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review on highly ordered vertically oriented TiO2 nanotube arrays fabrication material properties and solar energy applications. Solar Energy Materials and Solar Cells, 90, 2011-2075.
Mumtaz, F., Chen, C. S., Zhu, H. K., Atif, M., & Wang, Y. (2018). Reversible protein adsorption on PMOXA/PAA based coatings: Role of PAA. Chinese Journal of Polymer Science, 36, 1328-1341.
Nemethova, M., Auinger, S., & Small, J. V. (2008). Building the Actin cytoskeleton filopodia contribute to the construction of contractile bundles in the lamella. Journal of Cell Biology, 180, 1233-1244.
Park, J., Bauer, S., Mark, K., & Schmuki, P. (2007). Nanosize and vitality TiO2 nanotube diameter directs cell fate. Nano Letters, 7, 1686-1691.
Provenzano, P. P., & Keely, P. J. (2011). Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and rho GTPase signaling. Journal of Cell Science, 124, 1195-2005.
Rabe, M., Verdes, D., & Seeger, S. (2011). Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 162, 87-106.
Rokosz, K., Hryniewicz, T., Raaen, S., & Chapon, P. (2016). Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation characterisation and modelling. International Journal of Advanced Manufacturing Technology, 87, 1-16.
Rose, R., Weyand, M., Lammers, M., Ishizaki Ahmadian, M. R., & Wittinghofer, A. (2005). Structural and mechanistic insights into the interaction between rho and mammalian Dia. Nature, 435, 513-518.
Seunghan, O., Brammer, K. S., Li, Y., Dayu, T., Engler, A. J., Shu, C., & Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 1067, 2130-2135.
Sun, M., Deng, J., Tang, Z., Wu, J., Li, D., Chen, H., & Gao, C. Y. (2014). A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. Colloids and Surfaces B, 122, 134-142.
Tziampazis, E., Kohn, J., & Moghe, P. V. (2000). PEG-variant biomaterials as selectively adhesive protein templates model surfaces for controlled cell adhesion and migration. Biomaterials, 21, 511-520.
Wang, N., Li, H. Y., Lu, W. L., Li, J. H., Wang, J. S., Zhang, Z. T., & Liu, Y. R. (2011). Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials, 32, 6900-6911.
Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial-cell interactions by adsorbed proteins a review. Tissue Engineering, 11, 1-18.
Wu, S., Liu, X., & Gao, C. Y. (2015). Role of adsorbed proteins on hydroxyapatite-coated titanium in osteoblast adhesion and osteogenic differentiation. Scientific Bulletin, 607, 691-700.
Yang, D., Lü, X., Hong, Y., Xi, T., & Zhang, D. (2013). The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials. Biomaterials, 34, 5747-5758.
Yang, W. H., Xi, X. F., Ran, Q. C., Liu, P., Hu, Y., & Cai, K. Y. (2014). Influence of the titania nanotubes dimensions on adsorption of collagen an experimental and computational study. Materials Science and Engineering: C, 34, 410-416.
Zhao, L., Mei, S., Chu, P. K., Zhang, Y., & Wu, Z. (2010). The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 31, 5072-5082.
Zhao, L. Z., Wang, H. R., Huo, K. F., Zhang, X. M., Wang, W., Zhang, Y. M., … Chu, P. K. (2013). The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials, 341, 19-29.
Zhu, W., Liu, X., Liu, H., Tong, D., Yang, J., & Peng, J. (2011). An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochimica Acta, 56, 2618-2626.