Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.
convolutional neural networks
machine learning
non-small cell lung cancer
quantitative pathology
transcriptomic subtypes
Journal
Journal of the American Medical Informatics Association : JAMIA
ISSN: 1527-974X
Titre abrégé: J Am Med Inform Assoc
Pays: England
ID NLM: 9430800
Informations de publication
Date de publication:
01 05 2020
01 05 2020
Historique:
received:
27
08
2019
revised:
22
11
2019
accepted:
05
03
2020
entrez:
5
5
2020
pubmed:
5
5
2020
medline:
26
3
2021
Statut:
ppublish
Résumé
Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
Identifiants
pubmed: 32364237
pii: 5828209
doi: 10.1093/jamia/ocz230
pmc: PMC7309263
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
757-769Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
Nat Med. 2018 Oct;24(10):1559-1567
pubmed: 30224757
N Engl J Med. 2015 Feb 26;372(9):793-5
pubmed: 25635347
Lung Cancer. 2006 Apr;52(1):29-36
pubmed: 16476504
Chest. 2013 May;143(5 Suppl):e93S-e120S
pubmed: 23649456
Nat Commun. 2016 Aug 16;7:12474
pubmed: 27527408
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108
pubmed: 23959844
EBioMedicine. 2018 Jan;27:317-328
pubmed: 29292031
J Clin Oncol. 2004 Jun 1;22(11):2184-91
pubmed: 15169807
Histopathology. 2012 Jul;61(1):1-9
pubmed: 21477260
Clin Cancer Res. 2010 Jan 15;16(2):610-9
pubmed: 20068099
Am J Surg Pathol. 2008 May;32(5):732-7
pubmed: 18360282
Sci Transl Med. 2011 Nov 9;3(108):108ra113
pubmed: 22072638
Arch Pathol Lab Med. 2013 Dec;137(12):1723-32
pubmed: 23738764
Elife. 2017 Sep 06;6:
pubmed: 28876221
Eur Respir J. 2006 Dec;28(6):1186-9
pubmed: 16899486
Arch Pathol Lab Med. 2013 Jan;137(1):32-40
pubmed: 22583114
JAMA. 2016 Dec 13;316(22):2402-2410
pubmed: 27898976
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Oncologist. 2007 Jun;12(6):713-8
pubmed: 17602060
BMJ Qual Saf. 2019 Mar;28(3):238-241
pubmed: 30291179
J Clin Oncol. 2013 Mar 10;31(8):992-1001
pubmed: 23401443
J Pathol Inform. 2011;2:25
pubmed: 21773056
Med Image Anal. 2016 Oct;33:170-175
pubmed: 27423409
Nat Biomed Eng. 2018 Oct;2(10):719-731
pubmed: 31015651
Nature. 2014 Jul 31;511(7511):543-50
pubmed: 25079552
Database (Oxford). 2011 Sep 19;2011:bar026
pubmed: 21930502
J Pathol Inform. 2011;2:36
pubmed: 21886892
Mod Pathol. 2015 Aug;28(8):1058-63
pubmed: 26022456
J Pathol Inform. 2013 Sep 27;4:27
pubmed: 24244884
Nature. 2017 Jun 28;546(7660):686
pubmed: 28658222
JAMA. 2017 Dec 12;318(22):2199-2210
pubmed: 29234806
Nature. 2010 Apr 15;464(7291):993-8
pubmed: 20393554
J Thorac Dis. 2014 Oct;6(Suppl 5):S526-36
pubmed: 25349703
JAMA. 2015 Jun 2;313(21):2119-20
pubmed: 25928209
Mol Cell Proteomics. 2016 Aug;15(8):2525-36
pubmed: 27099341
Bioinformatics. 2018 Jan 15;34(2):319-320
pubmed: 28968749
Cell Syst. 2017 Dec 27;5(6):620-627.e3
pubmed: 29153840
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
pubmed: 26742998
JAMA. 2016 Dec 13;316(22):2353-2354
pubmed: 27898975
J Clin Oncol. 2008 Jul 20;26(21):3543-51
pubmed: 18506025
PLoS One. 2012;7(5):e36530
pubmed: 22590557
Mayo Clin Proc. 2008 May;83(5):584-94
pubmed: 18452692
JAMA Intern Med. 2018 Nov 1;178(11):1544-1547
pubmed: 30128552
Sci Transl Med. 2012 Oct 24;4(157):157ra143
pubmed: 23100629
IEEE Trans Med Imaging. 2016 May;35(5):1285-98
pubmed: 26886976
CA Cancer J Clin. 2015 Mar;65(2):87-108
pubmed: 25651787
Nature. 2012 Sep 27;489(7417):519-25
pubmed: 22960745
Clin Cancer Res. 2010 Oct 1;16(19):4864-75
pubmed: 20643781
IEEE Trans Neural Netw. 1997;8(1):98-113
pubmed: 18255614