Body mass variation is negatively associated with brain size: Evidence for the fat-brain trade-off in anurans.
Brain size
body mass
fat storage
trade-off
Journal
Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
16
10
2019
revised:
28
04
2020
accepted:
29
04
2020
pubmed:
5
5
2020
medline:
24
3
2021
entrez:
5
5
2020
Statut:
ppublish
Résumé
Species can evolve diverse strategies to survive periods of uncertainty. Animals may either invest in energy storage, allowing them to decrease foraging costs, such as locomotion or risk of predation, or they may invest in better cognitive abilities helping them to flexibly adapt their behavior to meet novel challenges. Here, we test this idea of a fat-brain trade-off in 38 species of Chinese anurans by relating the coefficient of variation of body mass (CV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1551-1557Subventions
Organisme : National Natural Sciences Foundation of China
ID : 31772451
Pays : International
Organisme : National Natural Sciences Foundation of China
ID : 31970393
Pays : International
Organisme : National Natural Sciences Foundation of China
ID : 31901234
Pays : International
Organisme : Science and Technology Youth Innovation Team of Sichuan Province
ID : 19CXTD0022
Pays : International
Organisme : Key Cultivation Foundation of China West Normal University
ID : 17A006
Pays : International
Organisme : Talent Project of China West Normal University
ID : 17YC335
Pays : International
Informations de copyright
© 2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.
Références
Alexander, R. M. 2003. Principles of animal locomotion. Princeton Univ. Press, Princeton, NJ.
Benson-Amram, S., B. Dantzer, G. Stricker, E. M. Swanson, and K. E. Holekamp. 2016. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 113:2532-2537.
Browning, R. C., E. A. Baker, J. A. Herron, and R. Kram. 2006. Effects of obesity and sex on the energetic cost and preferred speed of walking.J. Appl. Physiol. 100:390-398.
Bruce, L. L., and T. J. Neary. 1995. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46:224-234.
Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772.
Dietz, M. W., T. Piersma, A. Hedenstrom, and M. Brugge. 2007. Intraspecific variation in avian pectoral muscle mass: constraints on maintaining manoeuvrability with increasing body mass. Funct. Ecol. 21:317-326.
Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2:1969-1973.
Fei, L., C. Y. Ye, and J. P. Jiang. 2010. Colored atlas of China amphibians. Sichuan Publishing House of Science and Technology, Chengdu, China.
Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160:712-726.
Ghiani, G., E. Marongiu, F. Melis, G. Angioni, I. Sanna, A. Loi, M. Pusceddu, V. Pinna, A. Crisafulli, and F. Tocco. 2015. Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes. Appl. Physiol. Nutr. Metab. 40:938-944.
Gosler, A. G., J. J. D. Greenwood, and C. Perrins. 1995. Predation risk and the cost of being fat. Nature 377:621-623.
Hanna, J. B., D. Schmitt, and T. M. Griffin. 2008. The energetic cost of climbing in primates. Science 320:898.
Heldstab, S. A., C. van Schaik, and K. Isler. 2016. Who can afford to be both fat and smart? A comparative analysis of the fat-brain trade-off in mammals. J. Hum. Evol. 100:25-34.
Heldstab, S. A., K. Isler, and C. van Schaik. 2018. Hibernation constrains brain size evolution in mammals. J. Evol. Biol. 31:1582-1588.
Horschler, D. J., B. Hare, J. Call, J. Kaminski, Á. Miklósi, and E. L. MacLean. 2019. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 22:187-198.
Isler, K., and C. P. van Schaik. 2006. Costs of encephalization: the energy trade-off hypothesis tested on birds. J. Hum. Evol. 51:228-243.
Jiang, A., M. J. Zhong, M. Xie, S. L. Lou, L. Jin, R. Jehle, and W. B. Liao. 2015. Seasonality and age is positively related to brain size in Andrew's toad (Bufo andrewsi). Evol. Biol. 42:339-348.
Jin, L., S. N. Yang, W. B. Liao, and S. Lüpold. 2016. Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behavi. Ecol. Sociobiol. 70:1197-1208.
Karasov, W. H., B. Pinshow, J. M. Starck, and D. Afik. 2004. Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): A comparison among fed, fasted, food-restricted, and refed birds. Physiol. Biochem. Zool. 77:149-160.
Kotrschal, A., B. Rogell, A. Bundsen, B. Svensson, S. Zajitschek, I. Brannstrom, S. Immler, A. A. Maklakov, and N. Kolm. 2013. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23:168-171.
Liao, W. B. 2015. Evolution of life-history traits in Bufo andrewsi. Academic Press, Beijing, China.
Liao, W. B., S. L. Lou, Y. Zeng, and J. Merilä. 2015. Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. J. Evol. Biol. 28:1986-1996.
Liao, W. B., S. L. Lou, Y. Zeng, and A. Kotrschal. 2016. Large brains, small guts: the expensive tissue hypothesis supported in anurans. Am. Nat. 188:693-700.
Liao, W. B., Y. Huang, Y. Zeng, M. J. Zhong, Y. Luo, and S. Lüpold. 2018. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? Evolution 72:4-17.
Luo, Y., M. J. Zhong, Y. Huang, F. Li, W. B. Liao, and A. Kotrschal. 2017. Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Sci. Rep. 7:16629.
Mai, C. L., and W. B. Liao. 2019. Brain size evolution in anurans: a review. Anim. Biol. 69:265-279.
Mai, C. L., J. Liao, L. Zhao, S. M. Liu, and W. B. Liao. 2017. Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis. J. Zool. 302:63-72.
Mai, C. L., W. B. Liao, S. Lüpold, and A. Kotrschal. 2020. Relative brain size is predicted by the intensity of intrasexual competition in frogs. Am. Nat. https://doi.org/10.1086/709465.
Mi, Z. P. 2013. Sexual dimorphism in the hindlimb muscles of the Asiatic toad (Bufo gargarizans) in relation to male reproductive success. Asian Herpetol. Res. 4:56-61.
Mink, J. W., R. J. Blumenschine, and D. B. Adams. 1981. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241:R203-R212.
Navarrete, A., C. P. van Schaik, and K. Isler. 2011. Energetics and the evolution of human brain size. Nature 480:91-93.
Niven, J. E., and S. B. Laughlin. 2008. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211:1792-1804.
Orme, C. D. L., R. P. Freckleton, G. H. Thomas, T. Petzoldt, and S. A. Fritz. 2012. caper: comparative analyses of phylogenetics and evolution in R. Available via http://R-Forge.R-project.org/projects/caper/.
Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48:612-622.
Pontzer, H., D. A. Raichlen, B. M. Wood, A. Z. Mabulla, S. B. Racette, and F. W. Marlowe. 2012. Hunter-gatherer energetics and human obesity. PLoS One 7:e40503.
R Development Core Team. 2016. A language and environment for statistical computing. Available via http://www.R-project.org.
Rambaut, A., and A. Drummond. 2014. Tracer v1.6. Available via http://tree.bio.ed.ac.uk/software/tracer/.
Striedter, G. F. 2005. Principles of brain evolution. Sinauer, Sunderland, MA.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
van Woerden, J. T., C. P. van Schaik, and K. Isler. 2010. Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am. Nat. 176:758-767.
van Woerden, J. T., C. P. van Schaik, and K. Isler 2014. Seasonality of diet composition is related to brain size in New World monkeys. Am. J. Phys. Anthropol. 154:628-632.
Wu, Q. G., S. L. Lou, Y. Zeng, and W. B. Liao. 2016. Spawning location promotes evolution of bulbus olfactorius size in anurans. Herpetol. J. 26:247-250.
Yu, X., M. J. Zhong, D. Y. Li, L. Jin, W. B. Liao, and A. Kotrschal. 2018. Large-brained frogs mature later and live longer. Evolution 72:1174-1183.
Zamora-Camacho, F. J., S. Reguera, M. V. Rubino-Hispan, and G. Moreno-Rueda. 2014. Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol. Biol. 41:509-517.
Zeng, Y., S. L. Lou, W. B. Liao, R. Jehle, and A. Kotrschal. 2016. Sexual selection impacts brain anatomy in frogs and toads. Ecol. Evol. 6:7070-7079.
Zhong, M. J., X. Yu, and W. B. Liao. 2018. A review for life-history traits variation in frogs especially for anurans in China. Asian Herpetol. Res. 9:165-174.
Zihlman, A. L., and D. R. Bolter. 2015. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution. Phil. Trans. R. Soc. B 112:7466-7471.