MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics.


Journal

Oncogenesis
ISSN: 2157-9024
Titre abrégé: Oncogenesis
Pays: United States
ID NLM: 101580004

Informations de publication

Date de publication:
04 May 2020
Historique:
received: 29 10 2019
accepted: 15 04 2020
revised: 05 04 2020
entrez: 6 5 2020
pubmed: 6 5 2020
medline: 6 5 2020
Statut: epublish

Résumé

Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.

Identifiants

pubmed: 32366853
doi: 10.1038/s41389-020-0227-y
pii: 10.1038/s41389-020-0227-y
pmc: PMC7198506
doi:

Types de publication

Journal Article

Langues

eng

Pagination

43

Subventions

Organisme : Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
ID : PI17/01003

Références

Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
Oliveto, S., Mancino, M., Manfrini, N. & Biffo, S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 8, 45–56 (2017).
pubmed: 28289518 pmcid: 5329714
Zhou, L., Liu, F., Wang, X. & Ouyang, G. The roles of microRNAs in the regulation of tumor metastasis. Cell Biosci. 5, 32 (2015).
pubmed: 26146543 pmcid: 4491246
Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).
pubmed: 16557279
Chan, E., Prado, D. E. & Weidhaas, J. B. Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends Mol. Med. 17, 235–243 (2011).
pubmed: 21354374 pmcid: 3092835
Di Leva, G. & Croce, C. M. miRNA profiling of cancer. Curr. Opin. Genet. Dev. 23, 3–11 (2013).
pubmed: 23465882 pmcid: 3632255
Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).
pubmed: 25220842
Kaur, S., Baine, M. J., Jain, M., Sasson, A. R. & Batra, S. K. Early diagnosis of pancreatic cancer: challenges and new developments. Biomark. Med. 6, 597–612 (2012).
pubmed: 23075238 pmcid: 3546485
Longati, P. et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13, 95 (2013).
pubmed: 23446043 pmcid: 3617005
Qazi, A. M. et al. Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101. Surgery 152, 704–713 (2012).
pubmed: 22943841
Borja-Cacho, D., Jensen, E. H., Saluja, A. K., Buchsbaum, D. J. & Vickers, S. M. Molecular targeted therapies for pancreatic cancer. Am. J. Surg. 196, 430–441 (2008).
pubmed: 18718222 pmcid: 2570700
Dai, Z.-J. et al. Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des. Dev. Ther. 7, 149–159 (2013).
Papaconstantinou, I. G. et al. Review on the role of microRNA in biology, diagnosis, and treatment of pancreatic adenocarcinoma. Pancreas 41, 671–677 (2012).
pubmed: 22695087
Hayes, J., Peruzzi, P. P. & Lawler, S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014).
pubmed: 25027972
Yeung, M. L. et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 68, 8976–8985 (2008).
pubmed: 18974142 pmcid: 2596768
Liang, H. et al. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci. Rep. 6, 23772 (2016).
pubmed: 27021515 pmcid: 4810498
Vila-Navarro, E. et al. MicroRNAs for detection of pancreatic neoplasia: biomarker discovery by next-generation sequencing and validation in 2 independent cohorts. Ann. Surg. 265, 1226–1234 (2017).
pubmed: 27232245
Matthaei, H. et al. miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin. Cancer Res. 18, 4713–4724 (2012).
pubmed: 22723372 pmcid: 3547600
Ouyang, H. et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am. J. Pathol. 157, 1623–1631 (2000).
pubmed: 11073822 pmcid: 1885733
Cheng, Y. et al. RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget 8, 99567–99579 (2017).
pubmed: 29245924 pmcid: 5725115
Singh, B., Ronghe, A. M., Chatterjee, A., Bhat, N. K. & Bhat, H. K. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 34, 1165–1172 (2013).
pubmed: 23492819 pmcid: 3643421
Fang, L. et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 11, 4352–4365 (2012).
pubmed: 23111389 pmcid: 3552918
Tang, Q. et al. MicroRNA-93 suppress colorectal cancer development via Wnt/beta-catenin pathway downregulating. Tumour Biol. 36, 1701–1710 (2015).
pubmed: 25371073
Chen, X. et al. RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol. Cancer 14, 31 (2015).
pubmed: 25649143 pmcid: 4328068
Katoh, K. et al. The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J. Biol. Chem. 278, 39104–39113 (2003).
pubmed: 12860994
Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).
pubmed: 21310966
Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).
pubmed: 26040712
Yu, H. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat. Struct. Biol. 7, 224–229 (2000).
pubmed: 10700282
Santamaría, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).
pubmed: 17700700
Schmidt, M. et al. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Molecules 22, 2045 (2017).
pmcid: 6149964
Roche, S., Fumagalli, S. & Courtneidge, S. A. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569 (1995).
pubmed: 7545311
Varrin-Doyer, M. et al. Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J. Biol. Chem. 284, 13265–13276 (2009).
pubmed: 19276087 pmcid: 2676058
Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 4, 583–591 (2002).
pubmed: 12134159
Rahajeng, J., Giridharan, S. S. P., Naslavsky, N. & Caplan, S. Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J. Biol. Chem. 285, 31918–31922 (2010).
pubmed: 20801876 pmcid: 2952192
Uchida, Y. et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10, 165–179 (2005).
pubmed: 15676027
Arimura, N. et al. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol. Cell. Biol. 25, 9973–9984 (2005).
pubmed: 16260611 pmcid: 1280267
Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).
pubmed: 15652488
Zheng, Y. et al. Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. Nat. Commun. 9, 476 (2018).
pubmed: 29396402 pmcid: 5797184
Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005).
pubmed: 16109370
Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150
pubmed: 12388762 pmcid: 129971
Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).
pubmed: 10811817 pmcid: 2174556
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
pubmed: 9442869
Rathinam, R. & Alahari, S. K. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 29, 223–237 (2010).
pubmed: 20112053
Zutter, M. M., Santoro, S. A., Staatz, W. D. & Tsung, Y. L. Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc. Natl Acad. Sci. USA 92, 7411–7415 (1995).
pubmed: 7638207

Auteurs

Elena Vila-Navarro (E)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Elena Fernandez-Castañer (E)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Maria Rovira-Rigau (M)

Gene Therapy and Cancer Group/IDIBAPS/CIBERer, University of Barcelona, Barcelona, Spain.

Giulia Raimondi (G)

Gene Therapy and Cancer Group/IDIBAPS/CIBERer, University of Barcelona, Barcelona, Spain.

Maria Vila-Casadesus (M)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Juan Jose Lozano (JJ)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Philippe Soubeyran (P)

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.

Juan Iovanna (J)

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.

Antoni Castells (A)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Cristina Fillat (C)

Gene Therapy and Cancer Group/IDIBAPS/CIBERer, University of Barcelona, Barcelona, Spain.

Meritxell Gironella (M)

Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. meritxell.gironella@ciberehd.org.

Classifications MeSH