Multiparametric imaging reveals that mitochondria-rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity.
Adenosine Triphosphatases
/ metabolism
Animals
Calcium
/ metabolism
Epididymis
/ metabolism
Epithelial Cells
/ metabolism
Glycolysis
/ physiology
Homeostasis
/ physiology
Hydrogen-Ion Concentration
Kidney Tubules, Collecting
/ metabolism
Male
Mice
Mice, Inbred C57BL
Mitochondria
/ metabolism
Proton Pumps
/ metabolism
Proton-Translocating ATPases
/ metabolism
calcium
epididymis
mitochondria
multiphoton microscopy
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
06
02
2020
revised:
30
03
2020
accepted:
16
04
2020
pubmed:
6
5
2020
medline:
16
1
2021
entrez:
6
5
2020
Statut:
ppublish
Résumé
Alpha intercalated cells (αICs) in the kidney collecting duct (CD) belong to a family of mitochondria rich cells (MRCs) and have a crucial role in acidifying the urine via apical V-ATPase pumps. The nature of metabolism in αICs and its relationship to transport was not well-understood. Here, using multiphoton live cell imaging in mouse kidney tissue, FIB-SEM, and other complementary techniques, we provide new insights into mitochondrial structure and function in αICs. We show that αIC mitochondria have a rounded structure and are not located in close proximity to V-ATPase containing vesicles. They display a bright NAD(P)H fluorescence signal and low uptake of voltage-dependent dyes, but are energized by a pH gradient. However, expression of complex V (ATP synthase) is relatively low in αICs, even when stimulated by metabolic acidosis. In contrast, anaerobic glycolytic capacity is surprisingly high, and sufficient to maintain intracellular calcium homeostasis in the presence of complete aerobic inhibition. Moreover, glycolysis is essential for V-ATPase-mediated proton pumping. Key findings were replicated in narrow/clear cells in the epididymis, also part of the MRC family. In summary, using a range of cutting-edge techniques to investigate αIC metabolism in situ, we have discovered that these mitochondria dense cells have a high glycolytic capacity.
Identifiants
pubmed: 32367531
doi: 10.1096/fj.202000273R
doi:
Substances chimiques
Proton Pumps
0
Adenosine Triphosphatases
EC 3.6.1.-
Proton-Translocating ATPases
EC 3.6.3.14
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8510-8525Informations de copyright
© 2020 Federation of American Societies for Experimental Biology.
Références
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13:629-646.
Soltoff SP. ATP and the regulation of renal cell function. Annu Rev Physiol. 1986;48:9-31.
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: Structural and functional organization. Compr Physiol. 2012;2:805-861.
Fry AC, Karet FE. Inherited renal acidoses. Physiology. 2007;22:202-211.
Roy A, Al-Bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol. 2015;10:305-324.
Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+-ATPase. Physiol Rev. 2004;84:1263-1314.
Beyenbach KW, Wieczorek H. The V-type H+ ATPase: Molecular structure and function, physiological roles and regulation. J Exp Biol. 2006;209:577-589.
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J Exp Biol. 2009;212:1762-1772.
Battistone MA, Nair AV, Barton CR, et al. Extracellular adenosine stimulates vacuolar ATPase-dependent proton secretion in medullary intercalated cells. J Am Soc Nephrol. 2018;29:545-556.
Brown D, Breton S. Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol. 1996;199:2345-2358.
Bagnasco S, Good D, Balaban R, Burg M. Lactate production in isolated segments of the rat nephron. Am J Physiol. 1985;248:F522-F526.
Parra KJ, Kane PM. Reversible association between the V 1 and V 0 domains of yeast vacuolar H + -ATPase is an unconventional glucose-induced effect. Mol Cell Biol. 1998;18:7064-7074.
Lu M, Holliday LS, Zhang L, Dunn WA, Gluck SL. Interaction between aldolase and vacuolar H+-ATPase. Evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J. Biol. Chem. 2001;276:30407-30413.
Su Y, Blake-Palmer KG, Sorrell S, et al. Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol. 2008;295:F950-F958.
Da Silva N, Pisitkun T, Belleannée C, et al. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol - Cell Physiol. 2010;298:C1326-C1342.
Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009;20:1293-1302.
Duchen MR, Surin A, Jacobson J. Imaging mitochondrial function in intact cells. Methods Enzymol. 2003;361:353-389.
Peppiatt-Wildman CM, Crawford C, Hall AM. Fluorescence imaging of intracellular calcium signals in intact kidney tissue. Nephron - Exp. Nephrol. 2012;121:e49-e58.
Madisen L, Garner AR, Shimaoka D, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;85:942-958.
Schwenk F, Baron U, Rajewsky K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 1995;23:5080-5081.
Miller RL, Zhang P, Smith M, et al. V-ATPase B1-subunit promoter drives expression of EGFP in intercalated cells of kidney, clear cells of epididymis and airway cells of lung in transgenic mice. Am J Physiol Cell Physiol. 2005;288:C1134-C1144.
Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA. Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats-species differences and technical considerations. Cell Physiol Biochem. 2010;26:1059-1072.
Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (Band3) Cl -/HCO3- exchanger (slc4a1). J Am Soc Nephrol. 2007;18:1408-1418.
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9:676-682.
Cardona A, Saalfeld S, Schindelin J, et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE. 2012;7:e38011.
Kreshuk A, Straehle CN, Sommer C, et al. Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE. 2011;6:e24899.
Helmuth JA, Paul G, Sbalzarini IF. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images. BMC Bioinform. 2010;11:372.
Gomariz A, Helbling PM, Isringhausen S, et al. Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun. 2018;9:2532.
Luisier F, Vonesch C, Blu T, Unser M. Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process. 2010;90:415-427.
Bassnett S, Reinisch L, Beebe DC. Intracellular pH measurement using single excitation-dual emission fluorescence ratios. Am J Physiol - Cell Physiol. 1990;258:C171-C178.
Owen CS. Comparison of spectrum-shifting intracellular pH probes 5′ (and 6′)-carboxy-10-dimethylamino-3-hydroxyspiro[7H-benzo[c]xanthene-7, 1′(3′H)-isobenzofuran]-3′-one and 2′,7′-biscarboxyethyl-5(and 6)-carboxyfluorescein. Anal Biochem. 1992;204:65-71.
Bourgeois S, Bounoure L, Mouro-Chanteloup I, Colin Y, Brown D, Wagner CA. The ammonia transporter RhCG modulates urinary acidification by interacting with the vacuolar proton-ATPases in renal intercalated cells. Kidney Int. 2018;93:390-402.
Watts BA, Good DW. Apical membrane Na+/H+ exchange in rat medullary thick ascending limb. pH-dependence and inhibition by hyperosmolality. J Biol Chem. 1994;269:20250-20255.
Roos A, Boron WF. Intracellular pH. Physiol Rev. 1981;61:296-434.
Chambrey R, Goossens D, Bourgeois S, et al. Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol. 2005;289:F1281-F1290.
Biver S, Belge H, Bourgeois S, et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature. 2008;456:339-343.
Nakamura S. Glucose activates H+-ATPase in kidney epithelial cells. Am J Physiol - Cell Physiol. 2004;287:C97-105.
Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol. 1996;7:260-274.
Bergeron M, Guerette D, Forget J, Thiery G. Three-dimensional characteristics of the mitochondria of the rat nephron. Kidney Int. 1980;17:175-185.
Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3:35-40.
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. J Gen Physiol. 2012;139:415-423.
Muto S, Yasoshima K, Yoshitomi K, Imai M, Asano Y. Electrophysiological identification of alpha- and beta-intercalated cells and their distribution along the rabbit distal nephron segments. J Clin Invest. 1990;86:1829-1839.
Chambrey R, Kurth I, Peti-Peterdi J, et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110:7928-7933.
Ramshesh VK, Lemasters JJ. Imaging of mitochondrial pH using SNARF-1. In: Palmeira C, Moreno A., eds. Methods in Molecular Biology. Vol. 1782. New York, NY: Humana Press Inc.; 2018: 351-356.
Pelicano H, Xu R-H, Du M, et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006;175:913-923.
Wu J, Ocampo A, Belmonte JCI. Cellular metabolism and induced pluripotency. Cell. 2016;166:1371-1385.
Sieber MH, Thomsen MB, Spradling AC. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell. 2016;164:420-432.
Bagnis C, Marshansky V, Breton S, Brown D. Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol - Ren Physiol. 2001:280:F437-F448.
Petersen OH, Michalak M, Verkhratsky A. Calcium signalling: Past, present and future. Cell Calcium. 2005;38:161-169.
McKenzie M, Duchen MR. Impaired cellular bioenergetics causes mitochondrial calcium handling defects in MT-ND5 mutant cybrids. PLoS ONE. 2016;11:e0154371.
Weiner ID, Verlander JW. Recent advances in understanding renal ammonia metabolism and transport. Curr Opin Nephrol Hypertens. 2016;25:436-443.
Winter C, Kampik NB, Vedovelli L, et al. Aldosterone stimulates vacuolar H(+)-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway. Am J Physiol Cell Physiol. 2011;301:C1251-C1261.
Thorens B, Lodish HF, Brown D. Differential localization of two glucose transporter isoforms in rat kidney. Am J Physiol - Cell Physiol. 1990;259:C286-C294.
Spicer SS. Histological localization of glycogen in the urinary tract and lung. J Histochem Cytochem. 1958;6:52-60.
Hering-Smith KS, Hamm LL. Metabolic support of collecting duct transport. Kidney Int. 1998;53:408-415.
Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G, Wagner CA. Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol. 2010;299:F141-F154.
Chen L, Lee JW, Chou CL, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A. 2017;114:E9989-E9998.
Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360:758-763.
Wirthensohn G, Guder WG. Renal substrate metabolism. Physiol Rev. 1986;66:469-497.
Steinmetz PR, Husted RF, Mueller A, Beauwens R. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effects of inhibitors of H+ ATPase. J Membr Biol. 1981;59:27-34.
Erecińska M, Deas J, Silver IA. The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes. J Neurochem. 1995;65:2765-2772.
Ransick A, Lindström NO, Liu J, et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell. 2019;51:399-413.e7.
Uchida S, Endou H. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. - Ren Physiol. 1988;255:F977-F983.
Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int. 2013;83:72-83.
Chiaravalli M, Rowe I, Mannella V, et al. 2-Deoxy-D-glucose ameliorates PKD progression. J Am Soc Nephrol. 2016;27:1958-1969.
Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511:167-176.
Smolková K, Ježek P. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol. 2012;2012:273947.
Yamada E. Intimate association of H(+)-ATPase vesicles with mitochondria in the intercalated cell of the renal collecting duct. J Electron Microsc. 1995;44:148-150.
Peti-Peterdi J, Burford JL, Hackl MJ. The first decade of using multiphoton microscopy for high-power kidney imaging. Am J Physiol - Ren Physiol. 2012;302:F227-F233.
Dunn KW, Sutton TA, Sandoval RM. Live-animal imaging of renal function by multiphoton microscopy. Curr Protoc Cytom. 2018;83:12.9.1-12.9.25.