Ab Initio Prediction of the Phase Transition for Solid Ammonia at High Pressures.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 May 2020
Historique:
received: 22 07 2019
accepted: 08 04 2020
entrez: 7 5 2020
pubmed: 7 5 2020
medline: 7 5 2020
Statut: epublish

Résumé

Ammonia is one of the most basic components on the planet and its high-pressure characteristics play an important role in planetary science. Solid ammonia crystals frequently adopt multiple distinct polymorphs exhibiting different properties. Predicting the crystal structure of these polymorphs and under what thermodynamic conditions these polymorphs are stable would be of great value to environmental industry and other fields. Theoretical calculations based on the classical force fields and density-functional theory (DFT) are versatile methods but lack of accurate description of weak intermolecular interactions for molecular crystals. In this study, we employ an ab initio computational study on the solid ammonia at high pressures, using the second-order Møller-Plesset perturbation (MP2) theory and the coupled cluster singles, doubles, and perturbative triples (CCSD(T)) theory along with the embedded fragmentation method. The proposed algorithm is capable of performing large-scale calculations using high-level wavefunction theories, and accurately describing covalent, ionic, hydrogen bonding, and dispersion interactions within molecular crystals, and therefore can predict the crystal structures, Raman spectra and phase transition of solid ammonia phases I and IV accurately. We confirm the crystal structures of solid ammonia phases I and IV that have been controversial for a long time and predict their phase transition that occurs at 1.17 GPa and 210 K with small temperature dependence, which is in line with experiment.

Identifiants

pubmed: 32372007
doi: 10.1038/s41598-020-64030-3
pii: 10.1038/s41598-020-64030-3
pmc: PMC7200730
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7546

Références

Marnellos, G. E. & Stoukides, M. Ammonia synthesis at atmospheric pressure. Science 282, 98–100 (1998).
pubmed: 9756486 doi: 10.1126/science.282.5386.98
Schüth, F., Palkovits, R., Schlögl, R. & Su, D. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278–6289 (2012).
doi: 10.1039/C2EE02865D
Olovsson, I. & Templeton, D. H. X-ray study of solid ammonia. Acta Crystallogr. 12, 832–836 (1959).
doi: 10.1107/S0365110X59002420
Mills, R. L., Liebenberg, D. H. & Pruzan, P. Phase diagram and transition properties of condensed ammonia to 10 kbar. J. Chem. Phys. 86, 5219–5222 (1982).
doi: 10.1021/j100223a030
Eckert, J., Mills, R. L. & Satija, S. K. Structure of ND3 solids I and II at high pressure by neutron diffraction. J. Chem. Phys. 81, 6034 (1984).
doi: 10.1063/1.447605
Loveday, J. S., Nelmes, R. J., Marshall, W. G. & Besson, J. M. Structure of Deuterated Ammonia IV. Phys. Rev. Lett. 76, 74–77 (1996).
pubmed: 10060437 doi: 10.1103/PhysRevLett.76.74
Reed, J. W. & Harris, P. M. Neutron diffraction study of solid deuteroammonia. J. Chem. Phys. 35, 1730–1737 (1961).
doi: 10.1063/1.1732137
Hewat, A. W. & Riekel, C. The crystal structure of deuteroammonia between 2 and 180 K by neutron powder profile refinement. Acta Crystallogr. 35, 569–571 (1979).
doi: 10.1107/S0567739479001340
Von Dreele, R. B. & Hanson, R. C. Structure of NH3-III at 1.28 GPa and room temperature. Acta Crystallogr. 40, 1635–1638 (1984).
Gauthier, M., Pruzan, P., Chervin, J. C. & Besson, J. M. Raman scattering study of ammonia up to 75 GPa: Evidence for bond symmetrization at 60 GPa. Phys. Rev. B 37, 2102–2115 (1988).
doi: 10.1103/PhysRevB.37.2102
Fortes, A. D., Brodholt, J. P., Wood, I. G. & Vočadlo, L. Hydrogen bonding in solid ammonia from ab initio calculations. J. Chem. Phys. 118, 5987–5994 (2003).
doi: 10.1063/1.1555630
Kume, T., Sasaki, S. & Shimizu, H. Raman study of solid ammonia at high pressures and low temperatures. J. Raman Spectrosc. 32, 383–387 (2001).
doi: 10.1002/jrs.710
Woodley, S. M. & Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937–946 (2008).
pubmed: 19029928 doi: 10.1038/nmat2321
Schön, J. C. & Jansen, M. Prediction, determination and validation of phase diagrams via the global study of energy landscapes. Int. J. Mater. Res. 100, 135–152 (2009).
doi: 10.3139/146.110010
Schön, J. C. & Jansen, M. Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems - Part I. Z. Kristallogr. 216, 307–325 (2009).
Schön, J. C. & Jansen, M. Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part II. Z. Kristallogr. 216, 361–383 (2009).
Price, S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014).
pubmed: 24263977 doi: 10.1039/C3CS60279F
Oganov, A. R. Crystal structure prediction: reflections on present status and challenges. Faraday Discuss. 211, 643–660 (2018).
pubmed: 30306975 doi: 10.1039/C8FD90033G
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).
pubmed: 15224390 doi: 10.1002/jcc.20078
von Lilienfeld, O. A., Tavernelli, I., Rothlisberger, U. & Sebastiani, D. Optimization of effective atom centered potentials for london dispersion forces in density functional theory. Phys. Rev. Lett. 93, 153004 (2004).
doi: 10.1103/PhysRevLett.93.153004
Lin, I. C. et al. Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr. Phys. Rev. B 75, 1–5 (2007).
Karalti, O., Su, X., Al-Saidi, W. A. & Jordan, K. D. Correcting density functionals for dispersion interactions using pseudopotentials. Chem. Phys. Lett. 591, 133–136 (2014).
doi: 10.1016/j.cplett.2013.11.024
Maschio, L. et al. Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms. Phys. Rev. B. 76, 075101 (2007).
doi: 10.1103/PhysRevB.76.075101
Usvyat, D. et al. Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystal. Phys. Rev. B 76, 075102 (2007).
Ben, M. D., Hutter, J. & Vandevondele, J. Second-order Moller-Plesset perturbation theory in the condensed phase: An efficient and massively parallel Gaussian and plane waves approach. J. Chem. Theory Comput. 8, 4177–4188 (2012).
pubmed: 26605583 doi: 10.1021/ct300531w
Ben, M. D., Hutter, J. & Vandevondele, J. Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and plane waves scheme. J. Chem. Theory Comput. 9, 2654–2671 (2013).
pubmed: 26583860 doi: 10.1021/ct4002202
Hirata, S., Gilliard, K., He, X., Li, J. & Sode, O. Ab initio molecular crystal structures, spectra, and phase diagrams. Acc. Chem. Res. 47, 2721–2730 (2014).
pubmed: 24754304 doi: 10.1021/ar500041m
Beran, G. J. O. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 116, 5567–5613 (2016).
pubmed: 27008426 doi: 10.1021/acs.chemrev.5b00648
Liu, J., Zhang, J. Z. H. & He, X. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins. Phys. Chem. Chem. Phys. 18, 1864–1875 (2016).
pubmed: 26686896 doi: 10.1039/C5CP05693D
Hirata, S. Fast electron-correlation methods for molecular crystals: an application to the alpha, beta(1), and beta(2) modifications of solid formic acid. J. Chem. Phys. 129, 204104 (2008).
pubmed: 19045849 doi: 10.1063/1.3021077
Sode, O. & Hirata, S. Second-order many-body perturbation study of solid hydrogen fluoride under pressure. Phys. Chem. Chem. Phys. 14, 7765–7779 (2012).
pubmed: 22456828 doi: 10.1039/c2cp40236j
Wen, S. & Beran, G. J. O. Accidental degeneracy in crystalline Aspirin: New insights from high-level ab initio calculations. Cryst. Growth Des. 12, 2169–2172 (2012).
doi: 10.1021/cg300358n
Wen, S. & Beran, G. J. O. Crystal polymorphism in oxalyl dihydrazide: Is empirical DFT-D accurate enough? J. Chem. Theory Comput. 8, 2698–2705 (2012).
pubmed: 26592115 doi: 10.1021/ct300484h
Nanda, K. D. & Beran, G. J. O. What governs the proton ordering in ice XV? J. Phys. Chem. Lett. 4, 3165–3169 (2013).
doi: 10.1021/jz401625w
Sun, J. & Bartlett, R. J. Second-order many-body perturbation-theory calculations in extended systems. J. Chem. Phys. 104, 8553–8565 (1998).
doi: 10.1063/1.471545
Pisani, C. et al. Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. J. Comput. Chem. 29, 2113–2124 (2010).
doi: 10.1002/jcc.20975
He, X., Sode, O., Xantheas, S. S. & Hirata, S. Second-order many-body perturbation study of ice Ih. J. Chem. Phys. 137, 204505 (2012).
pubmed: 23206017 doi: 10.1063/1.4767898 pmcid: 23206017
Han, Y., Liu, J., Huang, L., He, X. & Li, J. Predicting the phase diagram of solid carbon dioxide at high pressure from first principles. npj Quantum Mater 4, 1–7 (2019).
doi: 10.1038/s41535-019-0149-0
Luo, H. et al. Rational Crystal Polymorph Design of Olanzapine. Cryst. Growth Des. 19, 2388–2395 (2019).
doi: 10.1021/acs.cgd.9b00068
Enginer, Y., Salihoglu, S. & Yurtseven, H. T–P phase diagram of ammonia solid phases I, II and III. Mater. Chem. Phys. 73, 57–61 (2002).
doi: 10.1016/S0254-0584(01)00339-X
Salihoğlu, S., Tari, Ö. & Yurtseven, H. A phase diagram of ammonia close to the melting point. Phase Transit. 72, 299–308 (2006).
doi: 10.1080/01411590008227785
Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).
pubmed: 18724375 doi: 10.1038/nmat2261
Griffiths, G. I. G., Needs, R. J. & Pickard, C. J. High-pressure ionic and molecular phases of ammonia within density functional theory. Phys. Rev. B 86, 144102 (2012).
doi: 10.1103/PhysRevB.86.144102
Li, J., Sode, O., Voth, G. A. & Hirata, S. A solid–solid phase transition in carbon dioxide at high pressures and intermediate temperatures. Nat. Commun. 4, 141–155. (2015).
Liu, J. & He, X. Accurate prediction of energetic properties of ionic liquid clusters using a fragment-based quantum mechanical method. Phys. Chem. Chem. Phys. 19, 20657–20666 (2017).
pubmed: 28737802 doi: 10.1039/C7CP03356G
Liu, J., He, X. & Zhang, J. Structure of liquid water - a dynamical mixture of tetrahedral and ‘ring-and-chain’ like structures. Phys. Chem. Chem. Phys. 19, 11931–11936 (2017).
pubmed: 28440370 doi: 10.1039/C7CP00667E
Liu, J., He, X., Zhang, J. & Qi, L. W. Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory. Chem. Sci. 9, 2065–2073 (2017).
pubmed: 29675248 pmcid: 5885775 doi: 10.1039/C7SC04205A
Liu, J., Qi, L. W., Zhang, J. & He, X. Fragment quantum mechanical method for large-sized ion-water clusters. J. Chem. Theory Comput. 13, 2021–2034 (2017).
pubmed: 28379695 doi: 10.1021/acs.jctc.7b00149
Frisch, M. J. et al. Gaussian 09 C.01. Gaussian, Inc.: Wallingford, CT, USA, 2009.
Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
doi: 10.1063/1.456153
Halkier, A. et al. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 286, 243–252 (1998).
doi: 10.1016/S0009-2614(98)00111-0
Halkier, A., Helgaker, T. U., Jørgensen, P., Klopper, W. & Olsen, J. Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 302, 437–446 (1999).
doi: 10.1016/S0009-2614(99)00179-7
Christensen, K. A. & Jensen, F. The basis set convergence of the Hartree–Fock energy for H2. J. Chem. Phys. 110, 6601–6605 (1999).
doi: 10.1063/1.478567
Hobza, P. & Šponer, J. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. J. Am. Chem. Soc. 124, 11802–11808 (2002).
pubmed: 12296748 doi: 10.1021/ja026759n
Jurečka, P. & Hobza, P. On the convergence of the (ΔECCSD(T)−ΔEMP2) term for complexes with multiple H-bonds. Chem. Phys. Lett. 365, 89–94 (2002).
doi: 10.1016/S0009-2614(02)01423-9
Dabkowska, I., Jurečka, P. & Hobza, P. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. J. Chem. Phys. 122, 204322 (2005).
pubmed: 15945739 doi: 10.1063/1.1906205
Otto, J. W., Porter, R. F. & Ruoff, A. L. Equation of state of solid ammonia (NH3) to 56 GPa. J. Phys. Chem. Solids 50, 171–175 (1989).
doi: 10.1016/0022-3697(89)90414-9
Binbrek, O. S. & Anderson, A. Raman spectra of molecular crystals. Ammonia and 3-deutero-ammonia. Chem. Phys. Lett. 15, 421–427 (1972).
doi: 10.1016/0009-2614(72)80205-7
Ninet, S., Datchi, F., Saitta, A. M., Lazzeri, M. & Canny, B. Raman spectrum of ammonia IV. Phys. Rev. B 74 (2006).

Auteurs

Lei Huang (L)

Key laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, China.
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Yanqiang Han (Y)

Key laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, China.

Jinyun Liu (J)

Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China. jyliu@ahnu.edu.cn.

Xiao He (X)

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. xiaohe@phy.ecnu.edu.cn.
NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China. xiaohe@phy.ecnu.edu.cn.

Jinjin Li (J)

Key laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, China. lijinjin@sjtu.edu.cn.
Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China. lijinjin@sjtu.edu.cn.

Classifications MeSH