Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
21
08
2019
accepted:
24
03
2020
revised:
19
03
2020
pubmed:
7
5
2020
medline:
12
10
2021
entrez:
7
5
2020
Statut:
ppublish
Résumé
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10
Identifiants
pubmed: 32372009
doi: 10.1038/s41380-020-0719-3
pii: 10.1038/s41380-020-0719-3
pmc: PMC7641978
mid: NIHMS1579455
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2111-2125Subventions
Organisme : NICHD NIH HHS
ID : R01 HD042157
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK101855
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL072518
Pays : United States
Organisme : NIDA NIH HHS
ID : HHSN271201200022C
Pays : United States
Organisme : NIMH NIH HHS
ID : RC2 MH089951
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054472
Pays : United States
Organisme : NIA NIH HHS
ID : RC4 AG039029
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL071025
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL054471
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL103612
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201300005C
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054497
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL053353
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK085175
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG003054
Pays : United States
Organisme : NIA NIH HHS
ID : N01AG12100
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 AG000513
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS017950
Pays : United States
Organisme : NIA NIH HHS
ID : N1AG62101A
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH081802
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95160
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG004446
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL120393
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL087698
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL071917
Pays : United States
Organisme : NIA NIH HHS
ID : R03 AG046389
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054509
Pays : United States
Organisme : NCRR NIH HHS
ID : UL1 RR025005
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG009740
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL080295
Pays : United States
Organisme : NIMH NIH HHS
ID : RC2 MH089995
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001079
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 HG200362
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL059367
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL130114
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL087660
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL085251
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95169
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL086694
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL074166
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65236
Pays : United States
Organisme : NHLBI NIH HHS
ID : R37 HL045508
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA144034
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA EY000401
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201300048C
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65235
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL087652
Pays : United States
Organisme : Medical Research Council
ID : G0700704
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : K25 HL121091
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA173640
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG004402
Pays : United States
Organisme : Medical Research Council
ID : MR/L01341X/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : U01 HG004424
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK075787
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95164
Pays : United States
Organisme : NHLBI NIH HHS
ID : K23 HL105897
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000124
Pays : United States
Organisme : NHLBI NIH HHS
ID : N02HL64278
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK075681
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL060944
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85086
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65234
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95162
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL054464
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL119443
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95168
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL118305
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG032098
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK066134
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL067348
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054457
Pays : United States
Organisme : Medical Research Council
ID : MR/R023484/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : U01 HG004729
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA182876
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK063491
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65233
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65237
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL061019
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95165
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95159
Pays : United States
Organisme : NCRR NIH HHS
ID : M01 RR000052
Pays : United States
Organisme : NHLBI NIH HHS
ID : RC1 HL099747
Pays : United States
Organisme : NIA NIH HHS
ID : N1AG62103A
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM010098
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95161
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001420
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201300050C
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC65226
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA182913
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00007/10
Pays : United Kingdom
Organisme : NCRR NIH HHS
ID : M01 RR007122
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG052409
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA047988
Pays : United States
Organisme : NCRR NIH HHS
ID : M01 RR010284
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL087263
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL080467
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85082
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL072507
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK071891
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK089256
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95167
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL086718
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG023746
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85083
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL060919
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC25195
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL054481
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201300046C
Pays : United States
Organisme : NIGMS NIH HHS
ID : S06 GM008016
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054473
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000040
Pays : United States
Organisme : NIA NIH HHS
ID : RC2 AG036495
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054495
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA182913
Pays : United States
Organisme : NHLBI NIH HHS
ID : U10 HL054496
Pays : United States
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : HHSN268201200054C
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC95166
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL117078
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG023629
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL087641
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85079
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL092165
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL090682
Pays : United States
Organisme : NCI NIH HHS
ID : UM1 CA182910
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85080
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS062059
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL055673
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL092301
Pays : United States
Organisme : NHLBI NIH HHS
ID : N01HC85081
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR003098
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL045670
Pays : United States
Organisme : Medical Research Council
ID : MR/K026992/1
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : UM1 CA182876
Pays : United States
Informations de copyright
© 2020. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Kaplan GA, Keil JE. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993;88:1973–98.
pubmed: 8403348
doi: 10.1161/01.CIR.88.4.1973
Liberatos P, Link BG, Kelsey JL. The measurement of social class in epidemiology. Epidemiol Rev. 1988;10:87–121.
pubmed: 3066632
doi: 10.1093/oxfordjournals.epirev.a036030
Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension: a meta-analysis. J Hypertens. 2015;33:221–9.
pubmed: 25479029
doi: 10.1097/HJH.0000000000000428
Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82:816–20.
pubmed: 1585961
pmcid: 1694190
doi: 10.2105/AJPH.82.6.816
Basson J, Sung YJ, Schwander K, Kume R, Simino J, de las Fuentes L, et al. Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study. Am J Hypertens. 2014;27:431–44.
pubmed: 24473254
pmcid: 3915746
doi: 10.1093/ajh/hpt283
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.
pubmed: 30038396
pmcid: 6393768
doi: 10.1038/s41588-018-0147-3
Hertz RP, Unger AN, Cornell JA, Saunders E. Racial disparities in hypertension prevalence, awareness, and management. Arch Intern Med. 2005;165:2098–104.
pubmed: 16216999
doi: 10.1001/archinte.165.18.2098
Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M, et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25:1292–8.
pubmed: 21536122
doi: 10.1016/j.bbi.2011.04.010
Metcalf PA, Sharrett AR, Folsom AR, Duncan BB, Patsch W, Hutchinson RG, et al. African American-white differences in lipids, lipoproteins, and apolipoproteins, by educational attainment, among middle-aged adults: the atherosclerosis risk in communities study. Am J Epidemiol. 1998;148:750–60.
pubmed: 9786230
doi: 10.1093/oxfordjournals.aje.a009696
Matthews KA, Kelsey SF, Meilahn EN, Kuller LH, Wing RR. Educational attainment and behavioral and biologic risk factors for coronary heart disease in middle-aged women. Am J Epidemiol. 1989;129:1132–44.
pubmed: 2729252
doi: 10.1093/oxfordjournals.aje.a115235
Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340:1467–71.
pubmed: 23722424
pmcid: 3751588
doi: 10.1126/science.1235488
Smith GD, Hart C, Watt G, Hole D, Hawthorne V. Individual social class, area-based deprivation, cardiovascular disease risk factors, and mortality: the Renfrew and Paisley Study. J Epidemiol Community Health. 1998;52:399–405.
pubmed: 9764262
pmcid: 1756721
doi: 10.1136/jech.52.6.399
Gallo LC, Matthews KA, Kuller LH, Sutton-Tyrrell K, Edmundowicz D. Educational attainment and coronary and aortic calcification in postmenopausal women. Psychosom Med. 2001;63:925–35.
pubmed: 11719631
doi: 10.1097/00006842-200111000-00011
Jacobsen BK, Thelle DS. Risk factors for coronary heart disease and level of education. The Tromso Heart Study. Am J Epidemiol. 1988;127:923–32.
pubmed: 3258732
doi: 10.1093/oxfordjournals.aje.a114895
Pierce JP, Fiore MC, Novotny TE, Hatziandreu EJ, Davis RM. Trends in cigarette smoking in the United States. Educational differences are increasing. JAMA. 1989;261:56–60.
pubmed: 2908995
doi: 10.1001/jama.1989.03420010066034
Stamler J, Elliott P, Appel L, Chan Q, Buzzard M, Dennis B, et al. Higher blood pressure in middle-aged American adults with less education-role of multiple dietary factors: the INTERMAP study. J Hum Hypertens. 2003;17:655–775.
pubmed: 13679955
pmcid: 6561108
doi: 10.1038/sj.jhh.1001608
Tian HG, Hu G, Dong QN, Yang XL, Nan Y, Pietinen P, et al. Dietary sodium and potassium, socioeconomic status and blood pressure in a Chinese population. Appetite. 1996;26:235–46.
pubmed: 8800480
doi: 10.1006/appe.1996.0018
Kaplan GA, Lazarus NB, Cohen RD, Leu DJ. Psychosocial factors in the natural history of physical activity. Am J Prev Med. 1991;7:12–17.
pubmed: 1867895
doi: 10.1016/S0749-3797(18)30959-0
McCaffery JM, Papandonatos GD, Lyons MJ, Niaura R. Educational attainment and the heritability of self-reported hypertension among male Vietnam-era twins. Psychosom Med. 2008;70:781–6.
pubmed: 18725432
pmcid: 4767498
doi: 10.1097/PSY.0b013e3181817be6
Rao DC, Sung YJ, Winkler TW, Schwander K, Borecki I, Cupples LA et al. Multiancestry study of gene-lifestyle interactions for cardiovascular traits in 610 475 individuals from 124 cohorts: design and rationale. Circ Cardiovasc Genet. 2017;10:e001649.
pubmed: 28620071
pmcid: 5476223
doi: 10.1161/CIRCGENETICS.116.001649
Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med. 2005;24:2911–35.
pubmed: 16152135
doi: 10.1002/sim.2165
1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.
doi: 10.1038/nature11632
Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, et al. Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP x environment regression coefficients. Genet Epidemiol. 2011;35:11–18.
pubmed: 21181894
pmcid: 3312394
doi: 10.1002/gepi.20546
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.
pubmed: 11315092
doi: 10.1111/j.0006-341X.1999.00997.x
Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212.
pubmed: 24762786
pmcid: 4083217
doi: 10.1038/nprot.2014.071
Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT, et al. A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am J Hum Genet. 2018;102:375–400.
pubmed: 29455858
pmcid: 5985266
doi: 10.1016/j.ajhg.2018.01.015
Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–934.
pubmed: 22064851
doi: 10.1093/nar/gkr917
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
pubmed: 20601685
pmcid: 2938201
doi: 10.1093/nar/gkq603
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
pubmed: 22955989
pmcid: 3431494
doi: 10.1101/gr.137323.112
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
pubmed: 24487276
pmcid: 3992975
doi: 10.1038/ng.2892
Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.
pmcid: 4530010
doi: 10.1038/nature14248
Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9:215–6.
pubmed: 22373907
pmcid: 3577932
doi: 10.1038/nmeth.1906
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
pmcid: 5776756
doi: 10.1038/nature24277
Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.
pubmed: 19430483
pmcid: 2891673
doi: 10.1038/ng.361
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.
pubmed: 21909115
doi: 10.1038/nature10405
Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.
pubmed: 27618452
pmcid: 5042863
doi: 10.1038/ng.3667
Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48:1162–70.
pubmed: 27618448
pmcid: 5320952
doi: 10.1038/ng.3660
Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48:1151–61.
pubmed: 27618447
pmcid: 5056636
doi: 10.1038/ng.3654
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.
pubmed: 19430479
pmcid: 2998712
doi: 10.1038/ng.384
Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49:54–64.
pubmed: 27841878
doi: 10.1038/ng.3715
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.
pubmed: 30224653
pmcid: 6284793
doi: 10.1038/s41588-018-0205-x
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2019;51:51–62.
pubmed: 30578418
doi: 10.1038/s41588-018-0303-9
Feitosa MF, Kraja AT, Chasman DI, Sung YJ, Winkler TW, Ntalla I, et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE. 2018;13:e0198166.
pubmed: 29912962
pmcid: 6005576
doi: 10.1371/journal.pone.0198166
The GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.
doi: 10.1126/science.1262110
Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–43.
pubmed: 24013639
pmcid: 3991562
doi: 10.1038/ng.2756
Hypertension Detection and Follow-up Program Cooperative Group. Race, education and prevalence of hypertension. Am J Epidemiol. 1977;106:351–61.
doi: 10.1093/oxfordjournals.aje.a112476
Sorel JE, Ragland DR, Syme SL, Davis WB. Educational status and blood pressure: the Second National Health and Nutrition Examination Survey, 1976-1980, and the Hispanic Health and Nutrition Examination Survey, 1982-1984. Am J Epidemiol. 1992;135:1339–48.
pubmed: 1510080
doi: 10.1093/oxfordjournals.aje.a116245
Steffen PR. The cultural gradient: culture moderates the relationship between socioeconomic status (SES) and ambulatory blood pressure. J Behav Med. 2006;29:501–10.
pubmed: 17082972
doi: 10.1007/s10865-006-9079-y
Vargas CM, Ingram DD, Gillum RF. Incidence of hypertension and educational attainment: the NHANES I epidemiologic followup study. First National Health and Nutrition Examination Survey. Am J Epidemiol. 2000;152:272–8.
pubmed: 10933274
doi: 10.1093/aje/152.3.272
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.
doi: 10.1161/CIR.0000000000000558
pubmed: 29386200
Ohyama T, Verstreken P, Ly CV, Rosenmund T, Rajan A, Tien AC, et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol. 2007;179:1481–96.
pubmed: 18158335
pmcid: 2373489
doi: 10.1083/jcb.200710061
Milnerwood AJ, Parsons MP, Young FB, Singaraja RR, Franciosi S, Volta M, et al. Memory and synaptic deficits in Hip14/DHHC17 knockout mice. Proc Natl Acad Sci USA. 2013;110:20296–301.
pubmed: 24277827
pmcid: 3864353
doi: 10.1073/pnas.1222384110
Shi W, Wang F, Gao M, Yang Y, Du Z, Wang C, et al. ZDHHC17 promotes axon outgrowth by regulating TrkA-tubulin complex formation. Mol Cell Neurosci. 2015;68:194–202.
pubmed: 26232532
doi: 10.1016/j.mcn.2015.07.005
Elhamdani A, Martin TF, Kowalchyk JA, Artalejo CR. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. J Neurosci. 1999;19:7375–83.
pubmed: 10460244
pmcid: 6782493
doi: 10.1523/JNEUROSCI.19-17-07375.1999
El Wakil A, Mari B, Barhanin J, Lalli E. Genomic analysis of sexual dimorphism of gene expression in the mouse adrenal gland. Horm Metab Res. 2013;45:870–3.
pubmed: 23921913
doi: 10.1055/s-0033-1349881
Marques FZ, Campain AE, Tomaszewski M, Zukowska-Szczechowska E, Yang YH, Charchar FJ, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8.
pubmed: 22042811
doi: 10.1161/HYPERTENSIONAHA.111.180729
McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, et al. Gene expression changes in glutamate and GABA-A receptors, neuropeptides, ion channels, and cholesterol synthesis in the periaqueductal gray following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Alcohol Clin Exp Res. 2016;40:955–68.
pubmed: 27061086
pmcid: 4844794
doi: 10.1111/acer.13056
McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann NY Acad Sci. 2010;1186:190–222.
pubmed: 20201874
doi: 10.1111/j.1749-6632.2009.05331.x
Paul JD, Coulombe KLK, Toth PT, Zhang Y, Marsboom G, Bindokas VP, et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol. 2013;64:124–31.
pubmed: 24090675
doi: 10.1016/j.yjmcc.2013.09.005
Ypsilanti AR, Zagar Y, Chedotal A. Moving away from the midline: new developments for Slit and Robo. Development. 2010;137:1939–52.
pubmed: 20501589
doi: 10.1242/dev.044511
Blockus H, Chedotal A. Slit-Robo signaling. Development. 2016;143:3037–44.
pubmed: 27578174
doi: 10.1242/dev.132829
Liu J, Zhang L, Wang D, Shen H, Jiang M, Mei P, et al. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev. 2003;120:1059–70.
pubmed: 14550534
doi: 10.1016/S0925-4773(03)00161-8
Michael DR, Phillips AO, Krupa A, Martin J, Redman JE, Altaher A, et al. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem. 2011;286:19523–32.
pubmed: 21357421
pmcid: 3103331
doi: 10.1074/jbc.M111.233916
Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18:45–48.
pubmed: 9425898
doi: 10.1038/ng0198-45
Bagos PG, Elefsinioti AL, Nikolopoulos GK, Hamodrakas SJ. The GNB3 C825T polymorphism and essential hypertension: a meta-analysis of 34 studies including 14,094 cases and 17,760 controls. J Hypertens. 2007;25:487–500.
pubmed: 17278960
doi: 10.1097/HJH.0b013e328011db24
Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein beta(3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension. 2001;37:739–43.
pubmed: 11230366
doi: 10.1161/01.HYP.37.2.739
Filigheddu F, Reid JE, Troffa C, PinnaParpaglia P, Argiolas G, Testa A, et al. Genetic polymorphisms of the beta-adrenergic system: association with essential hypertension and response to beta-blockade. Pharmacogenomics J. 2004;4:154–60.
pubmed: 15069461
doi: 10.1038/sj.tpj.6500247
Bojic T, Milovanovic B, Cupic SJ. Genetic polymorphisms of neurocardiovascular disorders. Arch Med. 2015;7:1–22.
Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Int J Mol Med. 2008;22:595–603.
pubmed: 18949379
Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, et al. Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol. 2006;175:383–8.
pubmed: 17074887
pmcid: 2064516
doi: 10.1083/jcb.200608031
Tyroler HA. Socioeconomic status in the epidemiology and treatment of hypertension. Hypertension. 1989;13 5 Suppl:I94–97.
pubmed: 2490834