Ciliary vortex flows and oxygen dynamics in the coral boundary layer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 05 2020
Historique:
received: 16 01 2020
accepted: 15 04 2020
entrez: 7 5 2020
pubmed: 7 5 2020
medline: 8 1 2021
Statut: epublish

Résumé

The exchange of metabolites between environment and coral tissue depends on the flux across the diffusive boundary layer (DBL) surrounding the tissue. Cilia covering the coral tissue have been shown to create vortices that enhance mixing in the DBL in stagnant water. To study the role of cilia under simulated ambient currents, we designed a new light-sheet microscopy based flow chamber setup. Microparticle velocimetry was combined with high-resolution oxygen profiling in the coral Porites lutea under varying current and light conditions with natural and arrested cilia beating. Cilia-generated vortices in the lower DBL mitigated extreme oxygen concentrations close to the tissue surface. Under light and arrested cilia, oxygen surplus at the tissue surface increased to 350 µM above ambient, in contrast to 25 µM under ciliary beating. Oxygen shortage in darkness decreased from 120 µM (cilia arrested) to 86 µM (cilia active) below ambient. Ciliary redistribution of oxygen had no effect on the photosynthetic efficiency of the photosymbionts and overall oxygen flux across the DBL indicating that oxygen production and consumption was not affected. We found that corals actively change their environment and suggest that ciliary flows serve predominantly as a homeostatic control mechanism which may play a crucial role in coral stress response and resilience.

Identifiants

pubmed: 32372014
doi: 10.1038/s41598-020-64420-7
pii: 10.1038/s41598-020-64420-7
pmc: PMC7200650
doi:

Substances chimiques

Water 059QF0KO0R
Oxygen S88TT14065

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7541

Références

Bayne, B. L. In Marine Biology of Polar Regions and Effects of Stress in Marine Organisms: Proceedings of the 18th European Marine Biology Symposium, University of Oslo, Norway (eds. Gray, J. S. & Christiansen, M. E.) 331–349 (John Wiley & Sons, 1985).
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche Construction. Am. Nat. 147, 641–648, https://doi.org/10.1086/285870 (1996).
doi: 10.1086/285870
Laland, K. N. & Sterelny, K. Perspective: Seven reasons (not) to neglect niche construction. Evolution 60, 1751–1762, https://doi.org/10.1111/j.0014-3820.2006.tb00520.x (2006).
doi: 10.1111/j.0014-3820.2006.tb00520.x pubmed: 17089961
Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. PNAS 111, 13391–13396, https://doi.org/10.1073/pnas.1323094111 (2014).
doi: 10.1073/pnas.1323094111 pubmed: 25192936
Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus1. Limnol. Oceanogr. 30, 111–122, https://doi.org/10.4319/lo.1985.30.1.0111 (1985).
doi: 10.4319/lo.1985.30.1.0111
Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. PNAS 86, 8833–8836 (1989).
doi: 10.1073/pnas.86.22.8833
Wang, J., Zhao, L. & Wei, H. Variable diffusion boundary layer and diffusion flux at sediment-water interface in response to dynamic forcing over an intertidal mudflat. Chin. Sci. Bull. 57, 1568–1577, https://doi.org/10.1007/s11434-012-4988-3 (2012).
doi: 10.1007/s11434-012-4988-3
Jørgensen, B. B. & Des Marais, D. J. The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35, 1343–1355, https://doi.org/10.4319/lo.1990.35.6.1343 (1990).
doi: 10.4319/lo.1990.35.6.1343 pubmed: 11538698
Hondzo, M., Feyaerts, T., Donovan, R. & O’Connor, B. L. Universal scaling of dissolved oxygen distribution at the sediment-water interface: A power law. Limnol. Oceanogr. 50, 1667–1676, https://doi.org/10.4319/lo.2005.50.5.1667 (2005).
doi: 10.4319/lo.2005.50.5.1667
Schlichting, H. & Gersten, K. Boundary-layer Theory. 9th edn, (Springer -Verlag, 2017).
Barry, P. H. & Diamond, J. M. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872, https://doi.org/10.1152/physrev.1984.64.3.763 (1984).
doi: 10.1152/physrev.1984.64.3.763 pubmed: 6377340
Chang, S., Elkins, C., Alley, M., Eaton, J. & Monismitha, S. Flow inside a coral colony measured using magnetic resonance velocimetry. Limnol. Oceanogr. 54, 1819–1827, https://doi.org/10.4319/lo.2009.54.5.1819 (2009).
doi: 10.4319/lo.2009.54.5.1819
Gardella, D. J. & Edmunds, P. J. The effect of flow and morphology on boundary layers in the scleractinians Dichocoenia stokesii (Milne-Edwards and Haime) and Stephanocoenia michilini (Milne-Edwards and Haime). J. Exp. Mar. Biol. Ecol. 256, 279–289, https://doi.org/10.1016/S0022-0981(00)00326-9 (2001).
doi: 10.1016/S0022-0981(00)00326-9 pubmed: 11164869
Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems. 3rd edn, (Cambridge University Press, 2007).
Ferrier-Pagès, C. et al. In situ assessment of the daily primary production of the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 58, 1409–1418, https://doi.org/10.4319/lo.2013.58.4.1409 (2013).
doi: 10.4319/lo.2013.58.4.1409
Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049, https://doi.org/10.1242/jeb.00622 (2003).
doi: 10.1242/jeb.00622 pubmed: 14555744
Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 57, 173–186 (1989).
doi: 10.3354/meps057173
Finelli, C. M., Helmuth, B. S. T., Pentcheff, N. D. & Wethey, D. S. Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 47–57, https://doi.org/10.1007/s00338-005-0055-8 (2006).
doi: 10.1007/s00338-005-0055-8
Mass, T., Genin, A., Shavit, U., Grinstein, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. PNAS 107, 2527–2531, https://doi.org/10.1073/pnas.0912348107 (2010).
doi: 10.1073/pnas.0912348107 pubmed: 20133799
Langdon, C. & Atkinson, M. J. Effect of elevated pCO
Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B. B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O
doi: 10.3354/meps117159
Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461, https://doi.org/10.2307/1542485 (1993).
Vogel, S. Life in Moving Fluids. 2nd edn, (Princeton Univ. Press, 1996).
Mariscal, R. N. & Bigger, C. H. Possible ecological significance of octocoral epithelial ultrastructure. Proceedings of 3rd International Coral Reef Symposium 1, 127–134 (1977).
Stafford-Smith, M. & Ormond, R. Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Mar. Freshw. Res 43, 683–705, https://doi.org/10.1071/MF9920683 (1992).
doi: 10.1071/MF9920683
Lewis, J. B. & Price, W. S. Patterns of ciliary currents in Atlantic reef corals and their functional significance. J. Zool. 178, 77–89, https://doi.org/10.1111/j.1469-7998.1976.tb02264.x (1976).
doi: 10.1111/j.1469-7998.1976.tb02264.x
Yonge, C. M. Studies on the physiology of corals. I. Feeding mechanisms and food. Scient. Rep. Gr. Barrier Reef Expd 1, 13–57 (1930).
Roder, C. et al. Trophic response of corals to large amplitude internal waves. Mar. Ecol. Prog. Ser. 412, 113–128, https://doi.org/10.3354/meps08707 (2010).
Schmidt, G. M. et al. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations. Mar. Ecol. Prog. Ser. 456, 113–126, https://doi.org/10.3354/meps09682 (2012).
doi: 10.3354/meps09682
Gibbons, I. R. et al. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. PNAS 75, 2220–2224, https://doi.org/10.1073/pnas.75.5.2220 (1978).
doi: 10.1073/pnas.75.5.2220 pubmed: 149986
Willert, C., Stasicki, B., Klinner, J. & Moessner, S. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21, 075402, https://doi.org/10.1088/0957-0233/21/7/075402 (2010).
doi: 10.1088/0957-0233/21/7/075402
Boudreau, B. P. Diagenetic Models and Their Implementation. 1st edn, (Springer, 1997).
Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant. Cell. Environ. 19, 291–299, https://doi.org/10.1111/j.1365-3040.1996.tb00251.x (1996).
doi: 10.1111/j.1365-3040.1996.tb00251.x
Ulstrup, K. E., Hill, R. & Ralph, P. J. Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar. Ecol. Prog. Ser. 286, 125–132, https://doi.org/10.3354/meps286125 (2005).
Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62, https://doi.org/10.1007/bf00024185 (1986).
doi: 10.1007/bf00024185 pubmed: 24435276
Van Driest, E. R. On turbulent flow near a wall. AIAA J. 23, 1007–1011, https://doi.org/10.2514/8.3713 (1956).
Schiller, C. & Herndl, G. J. Evidence of enhanced microbial activity in the interstitial space of branched corals: possible implications for coral metabolism. Coral Reefs 7, 179–184 (1989).
doi: 10.1007/BF00301596
Lesser, M. P. & Shick, J. M. Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar. Biol. 102, 243–255, https://doi.org/10.1007/bf00428286 (1989).
doi: 10.1007/bf00428286
Dykens, J. A. & Shick, J. M. Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal photoacclimatization. Biol. Bull. 167, 683–697, https://doi.org/10.2307/1541419 (1984).
Crawley, A., Kline, D. I., Dunn, S., Anthony, K. & Dove, S. The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob. Change Biol. 16, 851–863, https://doi.org/10.1111/j.1365-2486.2009.01943.x (2010).
doi: 10.1111/j.1365-2486.2009.01943.x
Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192, https://doi.org/10.1007/s003380050073 (1997).
doi: 10.1007/s003380050073
Lesser, M. P., Stochaj, W. R., Tapley, D. W. & Shick, J. M. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232, https://doi.org/10.1007/bf00265015 (1990).
doi: 10.1007/bf00265015
Yakovleva, I. M. et al. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar. Ecol. Prog. Ser. 378, 105–112, https://doi.org/10.3354/meps07857 (2009).
doi: 10.3354/meps07857
Chan, N. C. S., Wangpraseurt, D., Kühl, M. & Connolly, S. R. Flow and coral morphology control coral surface pH: implications for the effects of ocean acidification. Front. Mar. Sci. 3, https://doi.org/10.3389/fmars.2016.00010 (2016).
Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J. Exp. Mar. Biol. Ecol. 288, 1–15, https://doi.org/10.1016/S0022-0981(02)00578-6 (2003).
doi: 10.1016/S0022-0981(02)00578-6
Hill, R. et al. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar. Biol. 144, 633–640, https://doi.org/10.1007/s00227-003-1226-1 (2004).
doi: 10.1007/s00227-003-1226-1
Nakamura, T. & van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212, 301–304, https://doi.org/10.3354/meps212301 (2001).
doi: 10.3354/meps212301
Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. PNAS 114, 3660–3665, https://doi.org/10.1073/pnas.1621517114 (2017).
doi: 10.1073/pnas.1621517114 pubmed: 28320966
Pacherres, C. O., Schmidt, G. M. & Richter, C. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves. J. Exp. Biol. 216, 4365–4374, https://doi.org/10.1242/jeb.085548 (2013).
doi: 10.1242/jeb.085548 pubmed: 23997201
Jones, R. J. & Hoegh-Guldberg, O. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant. Cell. Environ. 24, 89–99, https://doi.org/10.1046/j.1365-3040.2001.00648.x (2001).
doi: 10.1046/j.1365-3040.2001.00648.x
Levy, O. et al. Diurnal hysteresis in coral photosynthesis. Mar. Ecol. Prog. Ser. 268 (2004).
Koren, K., Jakobsen, S. L. & Kühl, M. In-vivo imaging of O
doi: 10.1016/j.snb.2016.05.147

Auteurs

Cesar O Pacherres (CO)

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. cesar.pacherres@awi.de.
University of Bremen, Bremen, Germany. cesar.pacherres@awi.de.

Soeren Ahmerkamp (S)

Max Planck Institute for Marine Microbiology, Bremen, Germany.
Marum, Bremen, Germany.

Gertraud M Schmidt-Grieb (GM)

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.

Moritz Holtappels (M)

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Marum, Bremen, Germany.

Claudio Richter (C)

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
University of Bremen, Bremen, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH