Contraction-regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen.
AMPK
glycogen
mTORC1
protein synthesis
resistance exercise
skeletal muscle
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
08
03
2020
accepted:
14
04
2020
pubmed:
7
5
2020
medline:
16
2
2021
entrez:
7
5
2020
Statut:
ppublish
Résumé
AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α The mechansitic target of rapamycin complex 1 (mTORC1)-S6K1 signalling pathway regulates muscle growth-related protein synthesis and is antagonized by AMP-activated protein kinase (AMPK) in multiple cell types. Resistance exercise stimulates skeletal muscle mTORC1-S6K1 and AMPK signalling and post-contraction protein synthesis. Glycogen inhibits AMPK and has been proposed as a pro-anabolic stimulus. The present study aimed to investigate how muscle mTORC1-S6K1 signalling and protein synthesis respond to resistance exercise-mimicking contraction in the absence of AMPK and with glycogen manipulation. Resistance exercise-mimicking unilateral in situ contraction of musculus quadriceps femoris in anaesthetized wild-type and dominant negative α
Substances chimiques
Glycogen
9005-79-2
Mechanistic Target of Rapamycin Complex 1
EC 2.7.11.1
TOR Serine-Threonine Kinases
EC 2.7.11.1
AMP-Activated Protein Kinases
EC 2.7.11.31
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2637-2649Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
Références
Apro W, Moberg M, Hamilton DL, Ekblom B, van HG, Holmberg HC & Blomstrand E (2015). Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab 308, E470-E481.
Apro W, Wang L, Ponten M, Blomstrand E & Sahlin K (2013). Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 305,E22-E32.
Ben-Sahra I & Manning BD (2017). mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 45, 72-82.
Bentzinger CF, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, Handschin C, Tintignac LA, Hall MN & Ruegg MA (2013). Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle 3, 6.
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ & Yancopoulos GD (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3,1014-1019.
Cai X, Zhu C, Xu Y, Jing Y, Yuan Y, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q & Shu G (2016). Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways. Sci Rep 6, 26802.
Cerda-Kohler H, Henriquez-Olguin C, Casas M, Jensen TE, Llanos P & Jaimovich E (2018). Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep 6, e13800.
Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW & Hawley JA (2009). Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297, R1441-R1451.
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC & Thomas G (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105.
Derave W, Ai H, Ihlemann J, Witters LA, Kristiansen S, Richter EA & Ploug T (2000). Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 49, 1281-1287.
Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E & Rasmussen BB (2006). Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. The Journal of Physiology Online 576, 613-624.
Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E & Rasmussen BB (2009). Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587, 1535-1546.
Emmanuel N, Ragunathan S, Shan Q, Wang F, Giannakou A, Huser N, Jin G, Myers J, Abraham RT & Unsal-Kacmaz K (2017). Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep 19,2665-2680.
Ferguson G, Mothe-Satney I & Lawrence JC, Jr (2003). Ser-64 and Ser-111 in PHAS-I are dispensable for insulin-stimulated dissociation from eIF4E. J Biol Chem 278, 47459-47465.
Freeman S, Bartlett JB, Convey G, Hardern I, Teague JL, Loxham SJ, Allen JM, Poucher SM & Charles AD (2006). Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme. Br J Pharmacol 149, 775-785.
Fyfe JJ, Bishop DJ, Bartlett JD, Hanson ED, Anderson MJ, Garnham AP & Stepto NK (2018). Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training. Sci Rep 8, 560.
Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P & Hornberger TA (2011). Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 25, 1028-1039.
Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J & Hornberger TA (2010). A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21, 3258-3268.
Grundy D (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. J Physiol 593, 2547-2549.
Gusarov I, Pani B, Gautier L, Smolentseva O, Eremina S, Shamovsky I, Katkova-Zhukotskaya O, Mironov A & Nudler E (2017). Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat Commun 8, 15868.
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE & Shaw RJ (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226.
Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR & Hardie DG (2014). Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J 459, 275-287.
Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, Stockli J, Burchfield JG, Jensen TE, Jothi R, Kiens B, Wojtaszewski JF, Richter EA & James DE (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22, 922-935.
Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER & Esser KA (2004). Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380, 795-804.
Hoxhaj G, Hughes-Hallett J, Timson RC, Ilagan E, Yuan M, Asara JM, Ben-Sahra I, & Manning BD (2017). The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep 21, 1331-1346.
Inoki K, Zhu T & Guan KL (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590.
Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y & Takeda S (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19, 101-106.
Janzen NR, Whitfield J & Hoffman NJ (2018). Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. Int J Mol Sci 19.
Kjobsted R, Roll JLW, Jorgensen NO, Birk JB, Foretz M, Viollet B, Chadt A, Al-Hasani H & Wojtaszewski JFP (2019). AMPK and TBC1D1 regulate muscle glucose uptake after-but not during-exercise and contraction. Diabetes.
Lambert IH, Jensen JV & Pedersen PA (2014). mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts. Am J Physiol Cell Physiol 306, C1028-C1040.
Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmoller C, Sanz N, Sakakibara I, Saint-Amand E, Rimbaud S, Maire P, Marette A, Ventura-Clapier R, Ferry A, Wojtaszewski JF, Foretz M & Viollet B (2014). AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J 28, 3211-3224.
Lantier L, Mounier R, Leclerc J, Pende M, Foretz M & Viollet B (2010). Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J 24, 3555-3561.
Li Z, Rasmussen ML, Li J, Henriquez-Olguin C, Knudsen JR, Madsen AB, Sanchez-Quant E, Kleinert M & Jensen TE (2018). Periodized low protein-high carbohydrate diet confers potent, but transient, metabolic improvements. Mol Metab 17, 112-121.
Marabita M, Baraldo M, Solagna F, Ceelen JJM, Sartori R, Nolte H, Nemazanyy I, Pyronnet S, Kruger M, Pende M & Blaauw B (2016). S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Rep 17, 501-513.
Mothe-Satney I, Yang D, Fadden P, Haystead TA & Lawrence JC, Jr (2000). Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20, 3558-3567.
Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M & Viollet B (2011). Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10, 2640-2646.
Mu J, Barton ER & Birnbaum MJ (2003). Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice’. Biochem Soc Trans 31, 236-241.
Mu J, Brozinick JT, Jr., Valladares O, Bucan M & Birnbaum MJ (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7, 1085-1094.
Nair AB & Jacob S (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27-31.
Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K & Naokata I (2016). The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep 6, 31142.
Ogasawara R, Sato K, Matsutani K, Nakazato K & Fujita S (2014). The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab 306, E1155-E1162.
Possik E, Ajisebutu A, Manteghi S, Gingras MC, Vijayaraghavan T, Flamand M, Coull B, Schmeisser K, Duchaine T, van SM, Hall DH & Pause A (2015). FLCN and AMPK confer resistance to hyperosmotic stress via remodeling of glycogen stores. PLoS Genet 11, e1005520.
Roach PJ, DePaoli-Roach AA, Hurley TD & Tagliabracci VS (2012). Glycogen and its metabolism: some new developments and old themes. Biochem J 441, 763-787.
Schliess F, Richter L, vom DS & Haussinger D (2006). Cell hydration and mTOR-dependent signalling. Acta Physiol (Oxf) 187, 223-229.
Schoenfeld BJ (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43, 179-194.
Sherman WM, Plyley MJ, Sharp RL, Van Handel PJ, McAllister RM, Fink WJ & Costill DL (1982). Muscle glycogen storage and its relationship with water. Int J Sports Med 3, 22-24.
Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K & Swanson RA (2007). Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmet hyl)propyl]-1H-indole-2-carboxamide).J Pharmacol Exp Ther 321, 45-50.
Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H & Blomstrand E (2008). Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102, 145-152.
Thomson DM, Fick CA & Gordon SE (2008). AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol (1985) 104, 625-632.
Thoreen CC (2017). The molecular basis of mTORC1-regulated translation. Biochem Soc Trans 45, 213-221.
Vissing K, McGee S, Farup J, Kjolhede T, Vendelbo M & Jessen N (2013). Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports 23, 355-366.
Wang L, Yi D, Hou Y, Ding B, Li K, Li B, Zhu H, Liu Y & Wu G (2016). Dietary supplementation with alpha-ketoglutarate activates mTOR signaling and enhances energy status in skeletal muscle of lipopolysaccharide-challenged piglets.J Nutr 146, 1514-1520.
Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG & Richter EA (2002a). Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51, 284-292.
Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B & Richter EA (2003). Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284, E813-E822.
Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA & Kiens B (2000). Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1), 221-226.
Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie GD, Kemp BE, Kiens B & Richter EA (2002b). Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab00436.
Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL & Inoki K (2011). Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286, 32651-32660.
You JS, Frey JW & Hornberger TA (2012). Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid. PLoS ONE 7, e47258.