Assessment of body composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques.


Journal

Obesity reviews : an official journal of the International Association for the Study of Obesity
ISSN: 1467-789X
Titre abrégé: Obes Rev
Pays: England
ID NLM: 100897395

Informations de publication

Date de publication:
08 2020
Historique:
received: 11 03 2020
revised: 05 04 2020
accepted: 16 04 2020
pubmed: 7 5 2020
medline: 13 5 2021
entrez: 7 5 2020
Statut: ppublish

Résumé

Accurate measurement of body composition is required to improve health outcomes in children and adolescents with overweight or obesity. This systematic review aimed to summarize the reliability and validity of field and laboratory body composition techniques employed in pediatric obesity studies to facilitate technique selection for research and clinical practice implementation. A systematic search in MEDLINE (via PubMed), EMBASE, CINAHL, and SPORTDiscus from inception up to December 2019 was conducted, using a combination of the following concepts: body composition, pediatric overweight/obesity, and reliability/validity. The search strategy resulted in 66 eligible articles reporting reliability (19.7%), agreement between body composition techniques cross sectionally (80.3%), and/or diagnostic test accuracy (10.6%) in children and adolescents with overweight or obesity (mean age range = 7.0-16.5 years). Skinfolds, air-displacement plethysmography (ADP), dual-energy X-ray absorptiometry (DXA), and ultrasound presented as reliable techniques. DXA, ADP, and isotope dilution showed similar and the best agreement with reference standards. Compared with these laboratory techniques, the validity of estimating body composition by anthropometric equations, skinfolds, and BIA was inferior. In conclusion, the assessment of body composition by laboratory techniques cannot be replaced by field techniques due to introduction of measurement errors, which potentially conceal actual changes in body components.

Identifiants

pubmed: 32374499
doi: 10.1111/obr.13041
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13041

Subventions

Organisme : Stollery Children's Hospital Foundation through the Women and Children's Health Research Institute
ID : RES0040520
Pays : International
Organisme : CIHR
Pays : Canada
Organisme : Alberta Innovates
Pays : International
Organisme : Alberta Diabetes Institute
Pays : International
Organisme : CIHR
Pays : Canada

Informations de copyright

© 2020 World Obesity Federation.

Références

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627-2642. https://doi.org/10.1016/S0140-6736(17)32129-3
Di Cesare M, Sorić M, Bovet P, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17(1):212. https://doi.org/10.1186/s12916-019-1449-8
World Health Organization (WHO). Report of the Comission on Ending Childhood Obesity: implementation plan: executive summary. Vol 1.; 2017. doi:https://doi.org/10.1016/j.jhep.2013.02.018
Kelly AS, Fox CK, Rudser KD, Gross AC, Ryder JR. Pediatric obesity pharmacotherapy: current state of the field, review of the literature and clinical trial considerations. Int J Obes (Lond). 2016;40(7):1043-1050. https://doi.org/10.1038/ijo.2016.69
Vanderwall C, Eickhoff J, Randall Clark R, Carrel AL. BMI z-score in obese children is a poor predictor of adiposity changes over time. BMC Pediatr. 2018;18(1):1-6. https://doi.org/10.1186/s12887-018-1160-5
Gonzalez MC. Using bioelectrical impedance analysis for body composition assessment: sorting out some misunderstandings. J Parenter Enteral Nutr. 2019;43(8):954-955. https://doi.org/10.1002/jpen.1702
Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside. J Parenter Enteral Nutr. 2015;39(7):787-822. https://doi.org/10.1177/0148607115595227
Williams JE, Wells JCK, Wilson CM, Haroun D, Lucas A, Fewtrell MS. Evaluation of lunar prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am J Clin Nutr. 2006;83(5):1047-1054. https://doi.org/10.1093/ajcn/83.5.1047
Fields DA, Goran MI. Body composition techniques and the four-compartment model in children. J Appl Physiol. 2000;89(2):613-620. https://doi.org/10.1152/jappl.2000.89.2.613
Jelicic Kadic A, Vucic K, Dosenovic S, Sapunar D, Puljak L. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction. J Clin Epidemiol. 2016;74:119-123. https://doi.org/10.1016/j.jclinepi.2016.01.002
Whiting P, Rutjes A, Westwood M, et al. QUADAS-2: a revised tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann Intern Med. 2011;154(4):529-536.
Cortés-Castell E, Juste M, Palazón-Bru A, Monge L, Sánchez-Ferrer F, Rizo-Baeza MM. A simple equation to estimate body fat percentage in children with overweightness or obesity: a retrospective study. PeerJ. 2017;2017(4):1-14. https://doi.org/10.7717/peerj.3238
Thivel D, O'Malley G, Pereira B, Duché P, Aucouturier J. Comparison of total body and abdominal adiposity indexes to dual X-ray absorptiometry scan in obese adolescents. Am J Hum Biol. 2015;27(3):334-338. https://doi.org/10.1002/ajhb.22643
Samouda H, De Beaufort C, Stranges S, et al. Subtraction of subcutaneous fat to improve the prediction of visceral adiposity: exploring a new anthropometric track in overweight and obese youth. Pediatr Diabetes. 2017;18(5):399-404. https://doi.org/10.1111/pedi.12415
Rolland-Cachera MF, Brambilla P, Manzoni P, et al. Body composition assessed on the basis of arm circumference and triceps skinfold thickness: a new index validated in children by magnetic resonance imaging. Am J Clin Nutr. 1997;65(6):1709-1713. https://doi.org/10.1093/ajcn/65.6.1709
Bray GA, DeLany JP, Volaufova J, Harsha DW, Champagne C. Prediction of body fat in 12-y-old African American and White children: evaluation of methods. Am J Clin Nutr. 2002;76(5):980-990. https://doi.org/10.1093/ajcn/76.5.980
Woolcott OO, Bergman RN. Relative fat mass as an estimator of whole-body fat percentage among children and adolescents: a cross-sectional study using NHANES. Sci Rep. 2019;9(1):1-14. https://doi.org/10.1038/s41598-019-51701-z
Pineau JC, Lalys L, Bocquet M, et al. Ultrasound measurement of total body fat in obese adolescents. Ann Nutr Metab. 2010;56(1):36-44. https://doi.org/10.1159/000265849
Watts K, Naylor L, Davis E, et al. Do skinfolds accurately assess changes in body fat in obese children and adolescents? Med Sci Sport Exerc. 2006;38(3):439-470. https://doi.org/10.1249/01.mss.0000191160.07893.2d
Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in 2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. Eur J Clin Nutr. 2014;68(6):664-670. https://doi.org/10.1038/ejcn.2013.282
Aguirre CA, Salazar GDC, Lopez De Romaña DV, Kain JA, Corvalán CL, Uauy RE. Evaluation of simple body composition methods: assessment of validity in prepubertal Chilean children. Eur J Clin Nutr. 2015;69(2):269-273. https://doi.org/10.1038/ejcn.2014.144
Bammann K, Huybrechts I, Vicente-Rodriguez G, et al. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study. Int J Obes (Lond). 2013;37(4):520-526. https://doi.org/10.1038/ijo.2013.13
Chan DFY, Li AM, So HK, Yin J, Nelson EAS. New skinfold-thickness equation for predicting percentage body fat in Chinese obese children. Hong Kong J Paediatr. 2009;14(2):96-102.
Freedman DS, Horlick M, Berenson GS. A comparison of the slaughter skinfold-thickness equations and BMI in predicting body fatness and cardiovascular disease risk factor levels in children. Am J Clin Nutr. 2013;98(6):1417-1424. https://doi.org/10.3945/ajcn.113.065961
González-Ruíz K, Medrano M, Correa-Bautista JE, et al. Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy X-ray absorptiometry for estimating body fat percentage in Colombian children and adolescents with excess of adiposity. Nutrients. 2018;10(8):1-14. https://doi.org/10.3390/nu10081086
Elberg J, McDuffie J, Sebring N, et al. Comparison of methods to assess change in children's body composition. Am J Clin Nutr. 2004;80(1):64-69. https://doi.org/10.1038/jid.2014.371
Mooney A, Kelsey L, Fellingham GW, et al. Assessing body composition of children and adolescents using dual-energy X-ray absorptiometry, skinfolds, and electrical impedance. Meas Phys Educ Exerc Sci. 2011;15(1):2-17. https://doi.org/10.1080/1091367X.2011.537873
Stevens J, Cai J, Truesdale K, Cuttler L, Robinson T, Roberts A. Percent body fat prediction equations for 8- to 17-year-old American children. Pediatr Obes. 2014;9(4):260-271. https://doi.org/10.1111/j.2047-6310.2013.00175.x
Asayama K, Dobashi K, Hayashibe H, et al. Threshold values of visceral fat measures and their anthropometric alternatives for metabolic derangement in Japanese obese boys. Int J Obes (Lond). 2002;26(2):208-213. https://doi.org/10.1038/sj.ijo.0801865
Ball GDC, Huang TTK, Cruz ML, Shaibi GQ, Weigensberg MJ, Goran MI. Predicting abdominal adipose tissue in overweight Latino youth. Int J Pediatr Obes. 2006;1(4):210-216. https://doi.org/10.1080/17477160600913578
Kasvis P, Cohen TR, Loiselle SÈ, et al. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutr Res. 2015;35(3):206-213. https://doi.org/10.1016/j.nutres.2014.12.012
Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br J Nutr. 2008;100(4):918-924. https://doi.org/10.1017/S0007114508922558
Steinberg A, Manlhiot C, Li P, et al. Development and validation of bioelectrical impedance analysis equations in adolescents with severe obesity. J Nutr. 2019;149(7):1288-1293. https://doi.org/10.1093/jn/nxz063
Verney J, Metz L, Chaplais E, Cardenoux C, Pereira B, Thivel D. Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents. Nutr Res. 2016;36(7):663-670. https://doi.org/10.1016/j.nutres.2016.04.003
Shaikh MG, Crabtree NJ, Shaw NJ, Kirk JMW. Body fat estimation using bioelectrical impedance. Horm Res. 2007;68(1):8-10. https://doi.org/10.1159/000098481
Vásquez F, Salazar G, Díaz E, Lera L, Anziani A, Burrows R. Comparison of body fat calculations by sex and puberty status in obese schoolchildren using two and four compartment body composition models. Nutr Hosp. 2016;33(5):1116-1122.
Haroun D, Croker H, Viner RM, et al. Validation of BIA in obese children and adolescents and re-evaluation in a longitudinal study. Obesity. 2009;17(12):2245-2250. https://doi.org/10.1038/oby.2009.98
Atherton RR, Williams JE, Wells JCK, Fewtrell MS. Use of fat mass and fat free mass standard deviation scores obtained using simple measurement methods in healthy children and patients: comparison with the reference 4-component model. PLoS ONE. 2013;8(5):1-10. https://doi.org/10.1371/journal.pone.0062139
Lazzer S, Boirie Y, Meyer M, Vermorel M. Evaluation of two foot-to-foot bioelectrical impedance analysers to assess body composition in overweight and obese adolescents. Br J Nutr. 2003;90(5):987-992. https://doi.org/10.1079/bjn2003983
Lyra A, Bonfitto AJ, Barbosa VLP, et al. Comparison of methods for the measurement of body composition in overweight and obese Brazilian children and adolescents before and after a lifestyle modification program. Ann Nutr Metab. 2015;66(1):26-30. https://doi.org/10.1159/000369359
Newton RL, Alfonso A, White MA, et al. Percent body fat measured by BIA and DEXA in obese, African-American adolescent girls. Int J Obes (Lond). 2005;29(6):594-602. https://doi.org/10.1038/sj.ijo.0802968
Gillis L, Bar-Or O, Calvert R. Validating a practical approach to determine weight control in obese children and adolescents. Int J Obes (Lond). 2000;24(12):1648-1652. https://doi.org/10.1038/sj.ijo.0801458
Resende C, Camelo Junior J, Vieira M, et al. Body composition in obese adolescents: deuterium oxide dilution method, bioelectrical impedance and predictive equations. Curr Nutr Food Sci. 2013;9(10):73-81. https://doi.org/10.4236/fns.2013.410a003
Cleary J, Daniells S, Okely AD, Batterham M, Nicholls J. Predictive validity of four bioelectrical impedance equations in determining percent fat mass in overweight and obese children. J Am Diet Assoc. 2008;108(1):136-139. https://doi.org/10.1016/j.jada.2007.10.004
Hofsteenge GH, Chinapaw MJM, Weijs PJM. Fat-free mass prediction equations for bioelectric impedance analysis compared to dual energy X-ray absorptiometry in obese adolescents: a validation study. BMC Pediatr. 2015;15(1):158-166. https://doi.org/10.1186/s12887-015-0476-7
Seo YG, Kim JH, Kim YM, et al. Validation of body composition using bioelectrical impedance analysis in children according to the degree of obesity. Scand J Med Sci Sport. 2018;28(10):2207-2215. https://doi.org/10.1111/sms.13248
Battistini N, Brambilla P, Virgili F, et al. The prediction of total body water from body impedance in young obese subjects. Int J Obes (Lond). 1992;16(3):207-212.
Ohta M, Midorikawa T, Hikihara Y, et al. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals. Appl Physiol Nutr Metab. 2017;42(2):157-165. https://doi.org/10.1139/apnm-2016-0137
Luque V, Closa-Monasterolo R, Rubio-Torrents C, et al. Bioimpedance in 7-year-old children: validation by dual X-ray absorptiometry-part 1: assessment of whole body composition. Ann Nutr Metab. 2014;64(2):113-121. https://doi.org/10.1159/000356450
Luque V, Escribano J, Zaragoza-Jordana M, et al. Bioimpedance in 7-year-old children: validation by dual X-ray absorptiometry-part 2: assessment of segmental composition. Ann Nutr Metab. 2014;64(2):144-155. https://doi.org/10.1159/000363252
Butcher A, Kabiri LS, Brewer W, Ortiz A. Criterion validity and sensitivity to change of a pediatric bioelectrical impedance analysis scale in adolescents. Child Obes. 2019;15(2):142-148. https://doi.org/10.1089/chi.2018.0183
McCarthy HD, Cole TJ, Fry T, Jebb SA, Prentice AM. Body fat reference curves for children. Int J Obes (Lond). 2006;30(4):598-602. https://doi.org/10.1038/sj.ijo.0803232
Kabiri LS, Hernandez DC, Mitchell K. Reliability, validity, and diagnostic value of a pediatric bioelectrical impedance analysis scale. Child Obes. 2015;11(5):650-655. https://doi.org/10.1089/chi.2014.0156
Koot BGP, Westerhout R, Bohte AE, et al. Ultrasonography is not more reliable than anthropometry for assessing visceral fat in obese children. Pediatr Obes. 2014;9(6):443-447. https://doi.org/10.1111/j.2047-6310.2013.00193.x
Garcia-Vicencio S, Coudeyre E, Kluka V, et al. The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls. Int J Obes (Lond). 2016;40(2):245-251. https://doi.org/10.1038/ijo.2015.158
Wells JCK, Haroun D, Williams JE, et al. Evaluation of lean tissue density for use in air displacement plethysmography in obese children and adolescents. Eur J Clin Nutr. 2011;65(10):1094-1101. https://doi.org/10.1038/ejcn.2011.76
Gately PJ, Radley D, Cooke CB, et al. Comparison of body composition methods in overweight and obese children. J Appl Physiol. 2003;95(5):2039-2046. https://doi.org/10.1152/japplphysiol.00377.2003
Colantonio E, Dâmaso AR, Caranti DA, Pinheiro MM, Tufik S, De Mello MT. Clinical performance of 3-body fat measurements in obese adolescents 15 to 18 years-old. Rev Bras Med. 2015;72(3):77-82.
de Mello MT, Damaso AR, Antunes HKM, et al. Body composition evaluation in obese adolescents: the use of two different methods. Rev Bras Med do Esporte. 2005;11(5):251-254. https://doi.org/10.1590/S1517-86922005000500004
Radley D, Fields DA, Gately PJ. Validity of thoracic gas volume equations in children of varying body mass index classifications. Int J Pediatr Obes. 2007;2(3):180-187. https://doi.org/10.1080/17477160701191710
Wosje KS, Knipstein BL, Kalkwarf HJ. Measurement error of DXA: interpretation of fat and lean mass changes in obese and non-obese children. J Clin Densitom. 2006;9(3):335-340. https://doi.org/10.1016/j.jocd.2006.03.016
Tsang TW, Briody J, Kohn M, Chin MC, Singh MF. Abdominal fat assessment in adolescents using dual-energy X-ray absorptiometry. J Pediatr Endocrinol Metab. 2009;22(9):781-794. https://doi.org/10.1515/JPEM.2009.22.9.781
Wells JCK, Haroun D, Williams JE, et al. Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5-21 years. Int J Obes (Lond). 2010;34(4):649-655. https://doi.org/10.1038/ijo.2009.249
Shypailo RJ, Butte NF, Ellis KJ. DXA: can it be used as a criterion reference for body fat measurements in children. Obesity. 2008;16(2):457-462. https://doi.org/10.1038/oby.2007.81
Haroun D, Wells JCK, Williams JE, Fuller NJ, Fewtrell MS, Lawson MS. Composition of the fat-free mass in obese and nonobese children: matched case-control analyses. Int J Obes (Lond). 2005;29(1):29-36. https://doi.org/10.1038/sj.ijo.0802834
Hui SCN, Zhang T, Shi L, Wang D, Ip CB, Chu WCW. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI. Magn Reson Imaging. 2018;45(January 2017):97-104. https://doi.org/10.1016/j.mri.2017.09.016
Raschpichler MC, Sorge I, Hirsch W, et al. Evaluating childhood obesity: magnetic resonance-based quantification of abdominal adipose tissue and liver fat in children. Fortschr Röntgenstr. 2012;184(4):324-332. https://doi.org/10.1055/s-0031-1299094
Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333-2338. https://doi.org/10.1152/japplphysiol.00744.2004
Springer F, Ehehalt S, Sommer J, et al. Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. Eur J Radiol. 2012;81(7):1488-1494. https://doi.org/10.1016/j.ejrad.2011.04.006
Meredith-Jones KA, Williams SM, Taylor RW. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes. 2015;10(4):252-259. https://doi.org/10.1111/ijpo.263
Dias KA, Ramos JS, Wallen MP, et al. Accuracy of longitudinal assessment of visceral adipose tissue by dual-energy X-ray absorptiometry in children with obesity. J Obes. 2019;2019:1-12. https://doi.org/10.1155/2019/2193723
Talma H, Chinapaw MJM, Bakker B, Hirasing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013;14(11):895-905. https://doi.org/10.1111/obr.12061
Lohman TG, Milliken LA. Errors in body composition measurement and assessment. In: ACSM's Body Composition Assessment; 2020:3-12.
Kelly AS, Kaizer AM, Bosch TA, et al. Reaching the tipping point: identification of thresholds at which visceral adipose tissue may steeply increase in youth. Obesity. 2019;00(00):1-7. https://doi.org/10.1002/oby.22679
Bray GA, DeLany JP, Harsha DW, Volaufova J, Champagne CC. Evaluation of body fat in fatter and leaner 10-y-old African American and White children: the Baton Rouge children's study. Am J Clin Nutr. 2001;73(4):687-702. https://doi.org/10.1093/ajcn/73.4.687
Radley D, Cooke C, Fuller N, et al. Validity of foot-to-foot bio-electrical impedance analysis body composition estimates in overweight and obese children. Int J Body Compos Res. 2009;7(1):15-20.
Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1(1):19-30. https://doi.org/10.1123/pes.1.1.19
Toro-Ramos T, Paley C, Pi-Sunyer FX, Gallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015;69(12):1279-1289. https://doi.org/10.1038/ejcn.2015.117
Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond). 2006;30:S11-S17. https://doi.org/10.1038/sj.ijo.0803514
Wong MC, Ng BK, Kennedy SF, et al. Children and adolescents' anthropometrics body composition from 3-D optical surface scans. Obesity. 2019;27(11):1738-1749. https://doi.org/10.1002/oby.22637
Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527-558. https://doi.org/10.1146/annurev.nutr.17.1.527
Hübers M, Geisler C, Bosy-Westphal A, et al. Association between fat mass, adipose tissue, fat fraction per adipose tissue, and metabolic risks: a cross-sectional study in normal, overweight, and obese adults. Eur J Clin Nutr. 2019;73(1):62-71. https://doi.org/10.1038/s41430-018-0150-x
Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. Four-component model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci. 1992;82(6):687-693. https://doi.org/10.1042/cs0820687
Lohman TG. Applicability of body composition techniques and constants for children and youths. In: Pandolf KB, ed. Exercise and Sport Sciences Reviews. New York: Macmillan; 1986:325-357.
Bedogni G, Bollea MR, Severi S, Trunfio O, Manzieri AM, Battistini N. The prediction of total body water and extracellular water from bioelectric impedance in obese children. Eur J Clin Nutr. 1997;51(3):129-133. https://doi.org/10.1038/sj.ejcn.1600351
Goldfield GS, Cloutier P, Mallory R, Prud'homme D, Parker T, Doucet E. Validity of foot-to-foot bioelectrical impedance analysis in overweight and obese children and parents. J Sports Med Phys Fitness. 2006;46(3):447-453.
Lu K, Quach B, Tong TK, Lau PWC. Validation of leg-to-leg bio-impedance analysis for assessing body composition in obese Chinese children. J Exerc Sci Fit. 2003;1(2):97-103.
Meredith-Jones KA, Williams SM, Taylor RW. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes. 2014;10(4):252-259. https://doi.org/10.1111/ijpo.263
Ohta M, Midorikawa T, Hikihara Y, et al. Body mass-to-waist ratio strongly correlates with skeletal muscle volume in children. PLoS ONE. 2017;12(5):1-13. https://doi.org/10.1371/journal.pone.0177155
Thivel D, Verney J, Miguet M, et al. The accuracy of bioelectrical impedance to track body composition changes depends on the degree of obesity in adolescents with obesity. Nutr Res. 2018;54:60-68. https://doi.org/10.1016/j.nutres.2018.04.001
Eisenkölbl J, Kartasurya M, Widhalm K. Underestimation of percentage fat mass measured by bioelectrical impedance analysis compared to dual energy X-ray absorptiometry method in obese children. Eur J Clin Nutr. 2001;55(6):423-429. https://doi.org/10.1038/sj.ejcn.1601184

Auteurs

Camila E Orsso (CE)

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Maria Ines B Silva (MIB)

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Department of Applied Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil.
Department of Applied Nutrition, Nutrition School, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil.

Maria Cristina Gonzalez (MC)

Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil.
Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA.

Daniela A Rubin (DA)

Department of Kinesiology, California State University, Fullerton, California, USA.

Steven B Heymsfield (SB)

Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA.

Carla M Prado (CM)

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Andrea M Haqq (AM)

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH