Protective effect of ginsenoside Rk1, a major rare saponin from black ginseng, on cisplatin-induced nephrotoxicity in HEK-293 cells.
Antineoplastic Agents
/ toxicity
Antioxidants
/ isolation & purification
Caspase 3
/ genetics
Caspase 9
/ genetics
Cisplatin
/ antagonists & inhibitors
Gene Expression Regulation
/ drug effects
Ginsenosides
/ isolation & purification
Glutathione
/ agonists
HEK293 Cells
Heme Oxygenase-1
/ genetics
Humans
Malondialdehyde
/ antagonists & inhibitors
NF-E2-Related Factor 2
/ genetics
Oxidative Stress
/ drug effects
Panax
/ chemistry
Proto-Oncogene Proteins c-bcl-2
/ genetics
Reactive Oxygen Species
/ antagonists & inhibitors
Signal Transduction
bcl-2-Associated X Protein
/ genetics
HEK-293
anti-apoptosis
cisplatin
ginsenoside Rk1
nephrotoxicity
Journal
The Kaohsiung journal of medical sciences
ISSN: 2410-8650
Titre abrégé: Kaohsiung J Med Sci
Pays: China (Republic : 1949- )
ID NLM: 100960562
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
30
12
2019
revised:
16
03
2020
accepted:
07
04
2020
pubmed:
7
5
2020
medline:
3
7
2021
entrez:
7
5
2020
Statut:
ppublish
Résumé
Cisplatin, as one of the most effective chemotherapeutic agents, its clinical use is limited by serious side effect of nephrotoxicity. Cisplatin-induced nephrotoxicity is closely related to apoptosis induction and activation of caspase. The present study aimed to explore the potential protective effect of ginsenoside Rk1 (Rk1), a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity and the underlying mechanisms in human embryonic kidney 293 (HEK-293) cells. Our results showed that the reduced cell viability induced by cisplatin could significantly recover by Rk1. Furthermore, glutathione (GSH) as an oxidative index, was elevated and the lipid peroxidation product malondialdehyde (MDA) was significantly decreased after Rk1 treatment compared to the cisplatin group. Additionally, Rk1 can also decrease the ROS fluorescence expression and increase the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) compared to the cisplatin group, which suggested a suppression of oxidative response. More importantly, the cisplatin-induced elevated protein levels of Bax, cleaved caspase-3, cleaved caspase-9, and decreased protein level of Bcl-2 were reversed after treatment with Rk1. Our results elucidated the possible protective mechanism of Rk1 for the first time, which may involve in its anti-oxidation and anti-apoptosis effects.
Substances chimiques
Antineoplastic Agents
0
Antioxidants
0
BAX protein, human
0
BCL2 protein, human
0
Ginsenosides
0
NF-E2-Related Factor 2
0
NFE2L2 protein, human
0
Proto-Oncogene Proteins c-bcl-2
0
Reactive Oxygen Species
0
bcl-2-Associated X Protein
0
ginsenoside Rk1
0
Malondialdehyde
4Y8F71G49Q
HMOX1 protein, human
EC 1.14.14.18
Heme Oxygenase-1
EC 1.14.14.18
CASP3 protein, human
EC 3.4.22.-
CASP9 protein, human
EC 3.4.22.-
Caspase 3
EC 3.4.22.-
Caspase 9
EC 3.4.22.-
Glutathione
GAN16C9B8O
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
732-740Subventions
Organisme : Jilin Science & Technology Development Plan
ID : 20200304003YY
Organisme : National Natural Science Foundation of China
ID : 81860691
Organisme : Jilin Science & Technology Development Plan
ID : 20200301037RQ
Informations de copyright
© 2020 The Authors. The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia on behalf of Kaohsiung Medical University.
Références
Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104-114.
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238-1252.
El Shebini SM, Moaty MIA, Fouad S, Ahmed NH, Tapozada ST. Obesity related metabolic disorders and risk of renal disease: Impact of hypocaloric diet and Avena sativa supplement. Open Access Maced J Med Sci. 2018;6(8):1376-1381.
Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One. 2014;9(1):e84943.
Mundhe N, Kumar P, Arora I, Ahmed S, Lahkar M. Differential effect of NDGA on cisplatin-induced nephrotoxicity in Spargue-Dawley rats. Immunopharmacol Immunotoxicol. 2019;41(1):68-75.
Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res. 2014;34(1):547-550.
Elwell KE, Hall C, Tharkar S, Giraud Y, Bennett B, Bae C, et al. A fluorine containing bipyridine cisplatin analog is more effective than cisplatin at inducing apoptosis in cancer cell lines. Bioorg Med Chem. 2006;14(24):8692-8700.
Lee D, Lee S, Shim SH, Lee HJ, Choi Y, Jang TS, et al. Protective effect of lanostane triterpenoids from the sclerotia of Poria cocos Wolf against cisplatin-induced apoptosis in LLC-PK1 cells. Bioorg Med Chem Lett. 2017;27(13):2881-2885.
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223-242.
Malik S, Suchal K, Gamad N, Dinda AK, Arya DS, Bhatia J. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol. 2015;748:54-60.
Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFkappaB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J Drug Target. 2020;Feb 5:1-10.
Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003;14(1):1-10.
Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490-2518.
Jiang M, Wang CY, Huang S, Yang T, Dong Z. Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol Renal Physiol. 2009;296(5):F983-F993.
Song J, Liu D, Feng L, Zhang Z, Jia X, Xiao W. Protective effect of standardized extract of Ginkgo biloba against cisplatin-induced nephrotoxicity. Evid Based Complement Alternat Med. 2013;2013:846126.
Zhang W, Hou J, Yan X, Leng J, Li R, Zhang J, et al. Platycodon grandiflorum saponins ameliorate cisplatin-induced acute nephrotoxicity through the NF-kappaB-mediated inflammation and PI3K/Akt/apoptosis signaling pathways. Nutrients. 2018;10(9):1328.
Li YZ, Ren S, Yan XT, Li HP, Li W, Zheng B, et al. Improvement of cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. J Ethnopharmacol. 2018;217:228-237.
Ren S, Leng J, Xu XY, Jiang S, Wang YP, Yan XT, et al. Ginsenoside Rb1, a major saponin from Panax ginseng, exerts protective effects against acetaminophen-induced hepatotoxicity in mice. Am J Chin Med. 2019;47(8):1815-1831.
Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, et al. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod. 2000;63(12):1702-1704.
Ko H, Kim YJ, Park JS, Park JH, Yang HO. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells. Biosci Biotechnol Biochem. 2009;73(10):2183-2189.
Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, et al. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res. 2019;43(1):10-19.
Ju HK, Lee JG, Park MK, Park SJ, Lee CH, Park JH, et al. Metabolomic investigation of the anti-platelet aggregation activity of ginsenoside Rk(1) reveals attenuated 12-HETE production. J Proteome Res. 2012;11(10):4939-4946.
Elshafay A, Tinh NX, Salman S, Shaheen YS, Othman EB, Elhady MT, et al. Ginsenoside Rk1 bioactivity: A systematic review. PeerJ. 2017;5:e3993.
Li W, Yan MH, Liu Y, Liu Z, Wang Z, Chen C, et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients. 2016;8(9):pii: E566.
Fernandez-Rojas B, Rodriguez-Rangel DS, Granados-Castro LF, Negrette-Guzman M, Leon-Contreras JC, Hernandez-Pando R, et al. C-phycocyanin prevents cisplatin-induced mitochondrial dysfunction and oxidative stress. Mol Cell Biochem. 2015;406(1-2):183-197.
Kim N, Min WK, Park MH, Lee JK, Jin HK, Bae JS. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway. BMB Rep. 2016;49(5):288-292.
Teng ZY, Cheng XL, Cai XT, Yang Y, Sun XY, Xu JD, et al. Ancient Chinese formula Qiong-Yu-Gao protects against cisplatin-induced nephrotoxicity without reducing anti-tumor activity. Sci Rep. 2015;5:15592.
Sohn SH, Lee H, Nam JY, Kim SH, Jung HJ, Kim Y, et al. Screening of herbal medicines for the recovery of cisplatin-induced nephrotoxicity. Environ Toxicol Pharmacol. 2009;28(2):206-212.
Fouad AA, Morsy MA, Gomaa W. Protective effect of carnosine against cisplatin-induced nephrotoxicity in mice. Environ Toxicol Pharmacol. 2008;25(3):292-297.
Zhang L, Gu Y, Li H, Cao H, Liu B, Zhang H, et al. Daphnetin protects against cisplatin-induced nephrotoxicity by inhibiting inflammatory and oxidative response. Int Immunopharmacol. 2018;65:402-407.
Xiao T, Choudhary S, Zhang W, Ansari NH, Salahudeen A. Possible involvement of oxidative stress in cisplatin-induced apoptosis in LLC-PK1 cells. J Toxicol Environ Health A. 2003;66(5):469-479.
Park JY, Choi P, Kim T, Ko H, Kim HK, Kang KS, et al. Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: in vitro and in vivo studies. J Agric Food Chem. 2015;63(25):5964-5969.
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378.
Hsieh YH, Deng JS, Chang YS, Huang GJ. Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and Keap1/Nrf2/HO-1 signaling pathways in mice. Nutrients. 2018;10(9):pii: E1208.
Sha JY, Zhou YD, Yang JY, Leng J, Li JH, Hu JN, et al. Maltol (3-hydroxy-2-methyl-4-pyrone) slows d-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J Agric Food Chem. 2019;67(37):10342-10351.
Li RY, Zhang WZ, Yan XT, Hou JG, Wang Z, Ding CB, et al. Arginyl-fructosyl-glucose, a major Maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor kappaB and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem. 2019;67(20):5754-5763.
Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-656.
Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770-776.
Liman N, Alan E, Bayram GK, Gurbulak K. Expression of survivin, Bcl-2 and Bax proteins in the domestic cat (Felis catus) endometrium during the oestrus cycle. Reprod Domest Anim. 2013;48(1):33-45.
Agca CA, Tuzcu M, Gencoglu H, Akdemir F, Ali S, Sahin K, et al. Lycopene counteracts the hepatic response to 7,12-dimethylbenz[a]anthracene by altering the expression of Bax, Bcl-2, caspases, and oxidative stress biomarkers. Pharm Biol. 2012;50(12):1513-1518.