On the Spontaneous Build-Up of Voltage between Dissimilar Metals Under High Relative Humidity Conditions.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
06 May 2020
Historique:
received: 14 01 2020
accepted: 16 04 2020
entrez: 8 5 2020
pubmed: 8 5 2020
medline: 8 5 2020
Statut: epublish

Résumé

Certain metals can surprisingly build-up charge spontaneously, when exposed to high relative humidity (RH), although they need to be isolated from the ground. We have explored this phenomenon, building on former experimental knowledge and carrying out additional experiments, to identify the parameters that could enhance this charging. We used many types of metals with different characteristics under different RH and temperature conditions. While some metals were unaffected by high RH, others, like zinc and stainless steel, did acquire charge, when RH was >60%, and charged a capacitor to a voltage of 1 V. For the first time, we also performed outdoors experiments, showing this phenomenon is also valid under similar natural ambient humid conditions. If these results can be scaled up, it may lead to the development of practical applications for regions and times of high RH conditions.

Identifiants

pubmed: 32376839
doi: 10.1038/s41598-020-64409-2
pii: 10.1038/s41598-020-64409-2
pmc: PMC7203220
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7642

Références

Saunders, C. Charge separation mechanisms in clouds. Space Science Reviews 137, 335–353 (2008).
doi: 10.1007/s11214-008-9345-0
Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. Journal of the Atmospheric Sciences 35, 1536–1548 (1978).
doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
Workman, E. J. & Reynolds, S. E. Electrical Phenomena Occurring during the Freezing of Dilute Aqueous Solutions and Their Possible Relationship to Thunderstorm Electricity. Physical Review 78, 254–260 (1950).
doi: 10.1103/PhysRev.78.254
Muller, P. Glossary of Terms Used in Physical Organic Chemistry. Pure and Applied Chemistry 66, 1077–1184 (1994).
doi: 10.1351/pac199466051077
MacGorman, D. R. & Rust, W. D. The electrical nature of storms. (Oxford University Press, 1998).
Faraday, M. Series Experimental Researches in Electricity. Eighteenth Series. Philosophical Transactions of the Royal Society of London 133, 17–32 (1843).
doi: 10.1098/rstl.1843.0004
Armstrong, H. G. On the electricity of a jet of steam issuing from a boiler. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 370–374 (1840).
doi: 10.1080/14786444008650194
Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Materials Today 30, 34–51 (2019).
doi: 10.1016/j.mattod.2019.05.016
Dinger, J. E. & Gunn, R. Electrical effects associated with a change of state of water. Terrestrial Magnetism and Atmospheric Electricity 51, 477–494 (1946).
doi: 10.1029/TE051i004p00477
Helseth, L. E. & Guo, X. D. Contact Electrification and Energy Harvesting Using Periodically Contacted and Squeezed Water Droplets. Langmuir 31, 3269–3276 (2015).
doi: 10.1021/la503494c
Lin, Z.-H., Cheng, G., Lee, S., Pradel, K. C. & Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Advanced Materials 26, 4690–4696 (2014).
doi: 10.1002/adma.201400373
Lin, Z. H. et al. A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy 15, 256–265 (2015).
doi: 10.1016/j.nanoen.2015.04.037
Zhang, Y. et al. Electric field and humidity trigger contact electrification. Physical Review X 5, 11002 (2015).
doi: 10.1103/PhysRevX.5.011002
Ovchinnikova, K. & Pollack, G. H. Can water store charge? Langmuir 25, 542–547 (2009).
doi: 10.1021/la802430k
Miljkovic, N., Preston, D. J., Enright, R. & Wang, N. Jumping-droplet electrostatic energy harvesting Jumping-droplet electrostatic energy harvesting. Applied Physics Letters 105, 013111 (2017).
doi: 10.1063/1.4886798
Zheng, L. et al. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9, 291–300 (2014).
doi: 10.1016/j.nanoen.2014.07.024
Zaghloul, U. et al. On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices. Nanotechnology 22, 035705 (2011).
doi: 10.1088/0957-4484/22/3/035705
Schweitzer, P. A. Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals. (CRC Press Taylor & Francis Group, 2007).
Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surface Science Reports 46, 1–308 (2002).
doi: 10.1016/S0167-5729(01)00020-6
Hodgson, A. & Haq, S. Water adsorption and the wetting of metal surfaces. Surface Science Reports 64, 381–451 (2009).
doi: 10.1016/j.surfrep.2009.07.001
Salmeron, M. et al. Water growth on metals and oxides: Binding, dissociation and role of hydroxyl groups. Faraday Discussions 141, 221–229 (2008).
doi: 10.1039/B806516K
Galembeck, F. & Burgo, T. A. L. Chemical Electrostatics New Ideas on Electrostatic Charging: Mechanisms and consequences. (springer, 2017).
Ducati, T. R., Simoes, L. H. & Galembeck, F. Charge Partitioning at Gas-Solid Interfaces: Humidity Causes Electricity Buildup on Metals. Langmuir 26, 13763–13766 (2010).
doi: 10.1021/la102494k
Gouveia, R. F., Bernardes, J. S., Ducati, T. R. D. & Galembeck, F. Acid-Basic Site Detection and Mapping on Solid Surfaces at the Nanoscale, by Kelvin Force. Microscopy (KFM). NSTI-Nanotech 1, 9–12 (2013).
Ziv, B. & Saaroni, H. The contribution of moisture to heat stress in a period of global warming: The case of the Mediterranean. Climatic Change 104, 305–315 (2011).
doi: 10.1007/s10584-009-9710-3
Ziv, B., Saaroni, H. & Alpert, P. The factors governing the summer regime of the eastern Mediterranean. International Journal of Climatology 24, 1859–1871 (2004).
doi: 10.1002/joc.1113
Harpaz, T., Ziv, B., Saaroni, H. & Beja, E. Extreme summer temperatures in the East Mediterranean-dynamical analysis. International Journal of Climatology 34, 849–862 (2014).
doi: 10.1002/joc.3727
Reddy, T. B. Linden’s Handbook of Batteries. (McGraw Hill, 2011).
Bolton, D. The Computation of Equivalent Potential Temperature. American Meteorological Society 108, 1046–1053 (1980).
Saaroni, H., Savir, A. & Ziv, B. Synoptic classification of the summer season for the Levant using an ‘environment to climate’ approach. International Journal of Climatology 37, 1684–4699 (2017).
Philip, P. & Schweitzer, A. Atmospheric Degradation and Corrosion Control. (CRC Press, 1999).

Auteurs

J Y Lax (JY)

Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. yehuditlax@mail.tau.ac.il.

C Price (C)

Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

H Saaroni (H)

Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

Classifications MeSH