Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
06 May 2020
06 May 2020
Historique:
received:
25
02
2020
accepted:
09
04
2020
entrez:
8
5
2020
pubmed:
8
5
2020
medline:
8
5
2020
Statut:
epublish
Résumé
While lithium metal represents the ultimate high-energy-density battery anode material, its use is limited by dendrite formation and associated safety risks, motivating studies of the solid-electrolyte interphase layer that forms on the lithium, which is key in controlling lithium metal deposition. Dynamic nuclear polarisation enhanced NMR can provide important structural information; however, typical exogenous dynamic nuclear polarisation experiments, in which organic radicals are added to the sample, require cryogenic sample cooling and are not selective for the interface between the metal and the solid-electrolyte interphase. Here we instead exploit the conduction electrons of lithium metal to achieve an order of magnitude hyperpolarisation at room temperature. We enhance the
Identifiants
pubmed: 32376916
doi: 10.1038/s41467-020-16114-x
pii: 10.1038/s41467-020-16114-x
pmc: PMC7203113
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2224Subventions
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EPSRC-EP/M009521/1
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/L022524/1
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/R042853/1
Références
Goodenough, J. B., Abruna, H. D. & Buchanan, M. V. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2–4 (2007).
Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).
Wood, K. N., Noked, M. & Dasgupta, N. P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2, 664–672 (2017).
Liu, B., Zhang, J.-G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).
Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).
Bruce, P. G., Hardwick, L. J. & Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506–512 (2011).
Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).
Waldmann, T., Hogg, B.-I. & Wohlfahrt-Mehrens, M. Li plating as unwanted side reaction in commercial Li-ion cells – A review. J. Power Sources 384, 107–124 (2018).
Chang, H. J. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using
pubmed: 26524078
Brissot, C., Rosso, M., Chazalviel, J.-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925–929 (1999).
Peled, E. & Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 164, A1703–A1719 (2017).
Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).
Yoon, G., Moon, S., Ceder, G. & Kang, K. Deposition and stripping behavior of lithium metal in electrochemical system: continuum mechanics study. Chem. Mater. 30, 6769–6776 (2018).
Aurbach, D., Weissman, I., Schechter, A. & Cohen, H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996).
Xu, C. et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 27, 2591–2599 (2015).
Lu, P. & Harris, S. J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011).
Haber, S. & Leskes, M. What can we learn from solid state NMR on the electrode–electrolyte interface? Adv. Mater. 30, e1706496 (2018).
Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).
Becerra, L. R. et al. A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies. J. Magn. Reson. Ser. A 117, 28–40 (1995).
Thankamony, A. S. L., Wittmann, J. J., Kaushik, M. & Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103, 120–195 (2017).
Kemp, T. F. et al. Dynamic nuclear polarization enhanced NMR at 187 GHz/284 MHz using an extended interaction Klystron amplifier. J. Magn. Reson. 265, 77–82 (2016).
pubmed: 26867091
Leskes, M. et al. Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide. J. Phys. Chem. Lett. 8, 1078–1085 (2017).
pubmed: 28195488
Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).
pubmed: 28933161
Jin, Y. et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018).
pubmed: 29979869
Berruyer, P., Emsley, L. & Lesage, A. DNP in materials science: touching the surface. eMagRes 7, 93–104 (2018).
Wolf, T. et al. Endogenous dynamic nuclear polarization for natural abundance
pubmed: 30525555
Carver, T. R. & Slichter, C. P. Polarization of nuclear spins in metals. Phys. Rev. 92, 212–213 (1953).
Feher, G. & Kip, A. F. Electron spin resonance absorption in metals. I. Experimental. Phys. Rev. 98, 337–348 (1955).
Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).
Gullion, T. & Schaefer, J. Rotational-echo double-resonance NMR. J. Magn. Reson. 81, 196–200 (1989).
Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).
Brown, Z. L., Jurng, S., Nguyen, C. C. & Lucht, B. L. Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Appl. Energy Mater. 1, 3057–3062 (2018).
Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).
pubmed: 31435056
Heine, J. et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J. Electrochem. Soc. 162, A1094–A1101 (2015).
Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).
Shkrob, I. A., Wishart, J. F. & Abraham, D. P. What makes fluoroethylene carbonate different? J. Phys. Chem. C. 119, 14954–14964 (2015).
Bennett, L. H., Watson, R. E. & Carter, G. C. Relevance of knight shift measurements to the electronic density of states. J. Res. Natl Bur. Stand. Sect. A Phys. Chem. 74A, 569–610 (1970).
Pressley, R. J. & Berk, H. L. g Factor of conduction electrons in metallic lithium. Phys. Rev. 140, A1207–A1210 (1965).
Lesseux, G. G. et al. Unusual diffusive effects on the ESR of Nd
pubmed: 26912417
Leskes, M., Moore, A. J., Goward, G. R. & Grey, C. P. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy. J. Phys. Chem. C. 117, 26929–26939 (2013).
Meyer, B. M., Leifer, N., Sakamoto, S., Greenbaum, S. G. & Grey, C. P. High Field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem. Solid-State Lett. 8, A145 (2005).
Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).
pubmed: 24185759
Aurbach, D. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809–3820 (1996).
Sloop, S. E., Pugh, J. K., Wang, S., Kerr, J. B. & Kinoshita, K. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4, A42–A44 (2001).
Michan, A. L., Leskes, M. & Grey, C. P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products. Chem. Mater. 28, 385–398 (2016).
Kittel, C. Introduction to Solid State Physics. (John Wiley & Sons, 2004).
Pifer, J. H. & Magno, R. Conduction-electron spin resonance in a lithium film. Phys. Rev. B 3, 663–673 (1971).
Palenskis, V. Drift mobility, diffusion coefficient of randomly moving charge carriers in metals and other materials with degenerated electron gas. World J. Condens. Matter Phys. 03, 73–81 (2013).
Pecher, O., Vyalikh, A. & Grey, C. P. Challenges and new opportunities of in situ NMR characterization of electrochemical processes. AIP Conf. Proc. 1765, 020011 (2016).
Freytag, A. I., Pauric, A. D., Krachkovskiy, S. A. & Goward, G. R. In situ magic-angle spinning
pubmed: 31429559