Effect of Curing on Micro-Physical Performance of Polypropylene Fiber Reinforced and Silica Fume stabilized Expansive Soil Under Freezing Thawing Cycles.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
06 May 2020
Historique:
received: 25 02 2020
accepted: 15 04 2020
entrez: 8 5 2020
pubmed: 8 5 2020
medline: 8 5 2020
Statut: epublish

Résumé

This study presents the micro-physical investigation of polypropylene (PP) fiber-reinforced, and silica fume (SF) stabilized expansive soil (BC) subgrade. The coupling effect of soil, PP fiber, and SF has been evaluated under the freezing-thawing (F-T) cycle to assess the durability of treated BC Soil. The curing method and duration staggeringly influence the strength of SF treated BC soil; therefore, three different curing method, i.e., moisture-controlled curing (MC), gunny bag curing (GC), and water submerged curing (SC) to a period of 7, 14, and 28 days were considered. The BC soil has been reinforced with 0.25%, 0.50%, and 1.00% PP fiber and stabilized with 2%, 4%, 6% and 8% SF. The physical, chemical, and microstructural properties were determined before and after 2,4,6,8,10 F-T cycles. With the increase in SF content, the unconfined compressive strength of the expansive soil has been increased due to the formation of Calcium Silicate Hydrate (C-S-H) gel. The chemically inert, hydrophobic, non-corrosive nature, and higher tensile strength of PP fiber, it has a higher potential to reinforce the BC soil for durability under tensile failure. This research confirms the possibility of incorporating SF and PP Fiber in road work applications, with significant environmental benefits.

Identifiants

pubmed: 32376991
doi: 10.1038/s41598-020-64658-1
pii: 10.1038/s41598-020-64658-1
pmc: PMC7203102
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7624

Références

Fouzia Mebarki. Composite materials based on recycled polyethylene terephthalate and polyethylene naphthalate for electrical applications, http://espace.etsmtl.ca/1955/1/MEBARKI _Fouzia_thèse.pdf (2017).
Thirumalai, R., Babu, S. S., Naveennayak, V., Nirmal, R. & Lokesh, G. A Review on Stabilization of Expansive Soil Using Industrial Solid Wastes. Engineering 09, 1008–1017 (2017).
Shi, B., Jiang, H., Liu, Z. & Fang, H. Y. Engineering geological characteristics of expansive soils in China. Eng. Geol. 67, 63–71 (2002).
Dasog, G. S. & Mermut, A. R. Expansive soils and clays. in Encyclopedia of Earth Sciences Series 297–300, https://doi.org/10.1007/978-1-4020-4399-4_124 (Springer Netherlands, 2013)..
Thomas, P. J. Quantifying Properties and Variability of Expansive Soils in Selected Map Units. (Virginia Polytechnic Institute and State University, 1998).
Khazaei, J. & Moayedi, H. Soft Expansive Soil Improvement by Eco-Friendly Waste and Quick Lime. Arab J Sci Eng 44, 8337–8346 (2019).
Puppala, A. J., Pedarla, A., Pino, A. & Hoyos, L. R. Diffused double-layer swell prediction model to better characterize natural expansive clays. J. Eng. Mech. 143 (2017).
Steinberg, M. L. Geomembranes and the control of expansive soils in construction. (McGraw-Hill, 1998).
Puppala, A. J., Wattanasanticharoen, E. & Punthutaecha, K. Experimental evaluations of stabilisation methods for sulphate-rich expansive soils. Gr. Improv. 7, 23–35 (2003).
Kumar, P. & Singh, S. P. Fiber-Reinforced Fly Ash Subbases in Rural Roads. J. Transp. Eng. 134, 171–180 (2008).
Moayedi, H. & Nazir, R. Malaysian Experiences of Peat Stabilization, State of the Art. Geotechnical and Geological Engineering vol. 36 (2018).
Zhang, M. et al. Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Appl. Clay Sci. 108, 199–207 (2015).
Tataranni, P. et al. A laboratory and field study on 100% Recycled Cement Bound Mixture for base layers. Int. J. Pavement Res. Technol., https://doi.org/10.1016/j.ijprt.2017.11.005 (2018).
Rojas, E., Romo, M. P., Garnica, P. & Cervantes, R. Analysis of deep moisture barriers in expansive soils. II: Water flow formulation and implementation. Int. J. Geomech. 6, 319–327 (2006).
Rojas, E., Romo, M. P. & Cervantes, R. Closure to “Analysis of Deep Moisture Barriers in Expansive Soils. I: Constitutive Model Formulation” by Eduardo Rojas. Miguel P. Romo, and Refugio Cervantes. Int. J. Geomech. 9, 87–88 (2009).
Soundara, B. & Robinson, R. G. Influence of test method on swelling pressure of compacted clay. Int. J. Geotech. Eng. 3, 439–444 (2009).
Li, M., Fang, C., Kawasaki, S. & Achal, V. Fly ash incorporated with biocement to improve strength of expansive soil., https://doi.org/10.1038/s41598-018-20921-0 .
Liu, Y. et al. Utilization of Cementitious Material from Residual Rice Husk Ash and Lime in Stabilization of Expansive Soil. Adv. Civ. Eng. 2019, 1–17 (2019).
Ikeagwuani, C. C. & Nwonu, D. C. Emerging trends in expansive soil stabilisation: A review. J. Rock Mech. Geotech. Eng. 11, 423–440 (2019).
Sharma, M., Satyam, N. & Reddy, K. R. Investigation of various gram-positive bacteria for MICP in Narmada Sand, India. Int. J. Geotech. Eng. 1–15, https://doi.org/10.1080/19386362.2019.1691322 (2019).
Selvakumar, S. & Soundara, B. Swelling behaviour of expansive soils with recycled geofoam granules column inclusion. Geotext. Geomembranes 47, 1–11 (2019).
Shukla, S. K. An Introduction to Geosynthetic Engineering. An Introduction to Geosynthetic Engineering, https://doi.org/10.1201/9781315378930 (CRC Press, New York, 2016).
Tiwari, N. & Satyam, N. An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade. Eng. Sci. Technol. an Int. J., https://doi.org/10.1016/j.jestch.2019.12.006 (2020).
Phanikumar, B. R. & Nagaraju, T. V. Effect of Fly Ash and Rice Husk Ash on Index and Engineering Properties of Expansive Clays. Geotech. Geol. Eng. 36, 3425–3436 (2018).
Mirzababaei, M., Yasrobi, S. & Al-Rawas, A. Effect of polymers on swelling potential of expansive soils. Proc. Inst. Civ. Eng. - Gr. Improv. 162, 111–119 (2009).
Tiwari, N. & Satyam, N. Experimental Study on the Influence of Polypropylene Fiber on the Swelling Pressure Expansion Attributes of Silica Fume Stabilized Clayey Soil. Geosciences 9, 377 (2019).
Jha, A. K. & Sivapullaiah, P. V. Physical and strength development in lime treated gypseous soil with fly ash — Micro-analyses. Appl. Clay Sci. 145, 17–27 (2017).
Elert, K., Azañón, J. M. & Nieto, F. Smectite formation upon lime stabilization of expansive marls. Appl. Clay Sci. 158, 29–36 (2018).
Punthutaecha, K. & Puppala, A. J. P. E. S. K. V. and H. I. Volume Change Behaviors of Expansive Soils Stabilized with Recycled Ashes and Fibers. 1561, 295–306 (2014).
Rajkumar, M. R. Recent Advances in Materials, Mechanics and Management. in 3rd International Conference on Materials, Mechanics and Management 450 (2017).
Jin, L. et al. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced d-xylose utilization by Clostridium acetobutylicum. J. Biotechnol. 173, 7–9 (2014).
pubmed: 24412407
Jha, A. K. & Sivapullaiah, P. V. Volume change behavior of lime treated gypseous soil - influence of mineralogy and microstructure. Appl. Clay Sci. 119, 202–212 (2016).
Taha, R. et al. An overview of waste materials recycling in the Sultanate of Oman. Resour. Conserv. Recycl. 41, 293–306 (2004).
Blackburn, R. S. (Richard S.. Biodegradable and sustainable fibres. (Woodhead Pub. in association with the Textile Institute, 2005).
Mazzoni, G., Virgili, A. & Canestrari, F. Influence of different fillers and SBS modified bituminous blends on fatigue, self-healing and thixotropic performance of mastics. Road Materials and Pavement Design, https://doi.org/10.1080/14680629.2017.1417150 (2017).
Wilberforce, T., Baroutaji, A., Soudan, B., Al-Alami, A. H. & Olabi, A. G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 657, 56–72 (2019).
pubmed: 30530219
Mastali, M. & Abdollahnejad, Z. Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars with recycled aggregates: Compressive strength, hydration products, carbon footprint, and cost analysis. Carbon Dioxide Sequestration Cem. Constr. Mater. 299–348, https://doi.org/10.1016/B978-0-08-102444-7.00013-7 (2018)..
Schneider, M., Romer, M., Tschudin, M. & Bolio, H. Sustainable cement production-present and future. Cement and Concrete Research 41, 642–650 (2011).
Zhang, Z., Zhang, B. & Yan, P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr. Build. Mater. 105, 82–93 (2016).
Asavapisit, S., Nanthamontry, W. & Polprasert, C. Influence of condensed silica fume on the properties of cement-based solidified wastes. Cem. Concr. Res. 31, 1147–1152 (2001).
Koksal, F., Gencel, O. & Kaya, M. Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures. Constr. Build. Mater. 88, 175–187 (2015).
Benaicha, M., Roguiez, X., Jalbaud, O., Burtschell, Y. & Alaoui, A. H. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Constr. Build. Mater. 84, 103–110 (2015).
Cai, G., Liu, S., Du, Y., Zhang, D. & Zheng, X. Strength and deformation characteristics of carbonated reactive magnesia treated silt soil. J. Cent. South Univ. 22, 1859–1868 (2015).
Muller, A. C. A., Scrivener, K. L., Skibsted, J., Gajewicz, A. M. & McDonald, P. J. Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cem. Concr. Res. 74, 116–125 (2015).
Tang, C. S., Shi, B. & Zhao, L. Z. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembranes 28, 54–62 (2010).
Yang, G., Duan, J., Qiu, M. & Zhou, H. Mechanical properties of new waterproof materials and its application in railway subgrade. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Cent. South Univ. (Science Technol. 49, 2787–2796 (2018).
Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Soltani, A. & Khayat, N. Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotext. Geomembranes 46, 646–655 (2018).
Senol, A., Khosrowshahi, S. K.. & Yildirim, H.. Improvement of Expansive Soils Using Fiber Materials. in The 11th international congress on advances in Civil Engineering (ACE 2014) (2014).
Phanikumar, B. R. & Singla, R. Swell-consolidation characteristics of fibre-reinforced expansive soils. Soils Found. 56, 138–143 (2016).
Ma, Q. Y., Cao, Z. M. & Yuan, P. Experimental Research on Microstructure and Physical-Mechanical Properties of Expansive Soil Stabilized with Fly Ash, Sand, and Basalt Fiber. Adv. Mater. Sci. Eng. 2018 (2018).
Gao, L. et al. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil. Adv. Mater. Sci. Eng. 2015, 1–8 (2015).
Shahinur, S. & Hasan, M. Jute/Coir/Banana Fiber Reinforced Bio-Composites: Critical Review of Design, Fabrication, Properties and Applications. in Reference Module in Materials Science and Materials Engineering, https://doi.org/10.1016/B978-0-12-803581-8.10987-7 (Elsevier, 2019).
Orue, A. et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos. Part A Appl. Sci. Manuf. 84, 186–195 (2016).
Putman, B. J. & Amirkhanian, S. N. Utilization of waste fibers in stone matrix asphalt mixtures. In Resources, Conservation and Recycling vol. 42 265–274 (2004).
Zou, W. L., Wang, X. Q. & Vanapalli, S. K. Experimental evaluation of engineering properties of GFRP screw anchors for anchoring applications. J. Mater. Civ. Eng. 28, (2016).
Bekhiti, M., Trouzine, H. & Rabehi, M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Constr. Build. Mater. 208, 304–313 (2019).
Liu, H. F. et al. Experimental study on three-dimensional swelling pressure of highly expansive clay in Handan district of China. Yantu Gongcheng Xuebao/Chinese J. Geotech. Eng. 41, 789–796 (2019).
EsmaeilpourShirvani, N., TaghaviGhalesari, A., Khaleghnejad Tabari, M. & Janalizadeh Choobbasti, A. Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transp. Geotech. 19, 1–8 (2019).
Ilyas, R. A. et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos., https://doi.org/10.1002/pc.25379 (2019).
Chaduvula, U., Viswanadham, B. V. S. & Kodikara, J. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay. Appl. Clay Sci. 142, 163–172 (2017).
Malekzadeh, M. & Bilsel, H. Swell and Compressibility of Fiber Reinforced Expansive Soils. Int. J. Adv. Technol. Civ. Eng. 1, 42–46 (2012).
Kalkan, E. & Akbulut, S. The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Eng. Geol. 73, 145–156 (2004).
Tiwari, N. & Satyam, N. Experimental study on the influence of polypropylene fiber on the swelling pressure expansion attributes of silica fume stabilized clayey soil. Geosci. 9, (2019).
Wang, Y. et al. Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Appl. Sci. 9 (2019).
Elsharief, A. M., Zumrawi, M. M. E. & Salam, A. M. Experimental Study of Some Factors Affecting Swelling Pressure. Univ. Khartoum Eng. J. 4, 4–9 (2014).
Muller, A. C. A., Scrivener, K. L., Skibsted, J., Gajewicz, A. M. & McDonald, P. J. Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cem. Concr. Res. 74, 116–125 (2015).
Shi, B., Wu, Z., Inyang, H., Chen, J. & Wang, B. Preparation of soil specimens for SEM analysis using freeze-cut-drying. Bull. Eng. Geol. Environ. 58, 1–7 (1999).
Goldstein, J. I. et al. Coating and Conductivity Techniques for SEM and Microanalysis. in Scanning Electron Microscopy and X-Ray Microanalysis 671–740, https://doi.org/10.1007/978-1-4613-0491-3_13 (Springer US, 1992).
Lu, Y. et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles. Eng. Geol. 208, 93–99 (2016).
Lu, Y. et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles., https://doi.org/10.1016/j.coldregions.2018.10.008 (2018).
Kuo, W. T. & Shu, C. Y. Effect of particle size and curing temperature on expansion reaction in electric arc furnace oxidizing slag aggregate concrete. Constr. Build. Mater. 94, 488–493 (2015).
Bouziadi, F., Boulekbache, B. & Hamrat, M. The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Constr. Build. Mater. 114, 40–48 (2016).
Goodarzi, A. R., Akbari, H. R. & Salimi, M. Enhanced stabilization of highly expansive clays by mixing cement and silica fume. Appl. Clay Sci. 132–133, 675–684 (2016).
Kalkan, E. Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume. Appl. Clay Sci. 52, 345–352 (2011).
Ouhadi, V. R., Yong, R. N., Goodarzi, A. R. & Safari-Zanjani, M. Effect of temperature on the re-structuring of the microstructure and geo-environmental behaviour of smectite. Appl. Clay Sci. 47, 2–9 (2010).
Robertson, A. H. J., Hill, H. R. & Main, A. M. Analysis of Soil in the Field using portable FTIR. in Soil Spectroscopy: the present and future of Soil Monitoring 1–20 (2013).
Farmer, V. C. The Infrared Spectra of Minerals. (Mineralogical Society of Great Britain and Ireland, 1974), https://doi.org/10.1180/mono-4 .
Sharma, L. K., Sirdesai, N. N., Sharma, K. M. & Singh, T. N. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Appl. Clay Sci. 152, 183–195 (2018).
Temuujin, J., van Riessen, A. & Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 167, 82–88 (2009).
pubmed: 19201089
García Lodeiro, I., Fernández-Jimenez, A., Palomo, A. & Macphee, D. E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40, 27–32 (2010).
Kalinkin, A. M., Kalinkina, E. V., Politov, A. A., Makarov, V. N. & Boldyrev, V. V. Mechanochemical interaction of Ca silicate and aluminosilicate minerals with carbon dioxide. in Journal of Materials Science vol. 39, 5393–5398 (2004).
García Lodeiro, I., Macphee, D. E., Palomo, A. & Fernández-Jiménez, A. Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009).
Vinod, J. S., Indraratna, B. & Al Mahamud, M. A. Stabilisation of an erodible soil using a chemical admixture. Proc. Inst. Civ. Eng. Gr. Improv. 163, 43–51 (2010).
Christelle, B. Contribution À L’Étude De L’Activation Thermique Du Kaolin: Évolution De La Structure Cristallographique Et Activité Pouzzolanique. 96-98 pp (2005).
Madejová, J., Gates, W. P. & Petit, S. IR Spectra of Clay Minerals. in Developments in Clay Science vol. 8, 107–149 (Elsevier B.V., 2017).
Sharma, A. K. & Sivapullaiah, P. V. Strength development in fly ash and slag mixtures with lime. Proc. Inst. Civ. Eng. Gr. Improv. 169, 194–205 (2016).
Atahu, M. K., Saathoff, F. & Gebissa, A. Strength and compressibility behaviors of expansive soil treated with coffee husk ash. J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2018.11.004 (2019).
Inoue, A., Sciences, E. & Hampshire, N. morphology of Clay Minerals in the Smectite-To-Illite conversion Series By scaning electronic microscopy. Clays Clay Miner. 34, 187–197 (1986).
Al-Taie, A., Disfani, M. M., Evans, R., Arulrajah, A. & Horpibulsuk, S. Swell-shrink Cycles of Lime Stabilized Expansive Subgrade. Procedia Eng. 143, 615–622 (2016).
Canakci, H., Güllü, H. & Alhashemy, A. Performances of using geopolymers made with various stabilizers for deep mixing. Materials (Basel). 12 (2019).
Pourabbas Bilondi, M., Toufigh, M. M. & Toufigh, V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Constr. Build. Mater. 170, 302–313 (2018).
Lu, Y., Liu, S., Zhang, Y., Li, Z. & Xu, L. Freeze-thaw performance of a cement-treated expansive soil. Cold Reg. Sci. Technol. 170 (2020).
Yang, L. S. Cracking in an expansive soil under freeze–thaw cycles. Sci. Cold Arid Reg. 9, 392–397 (2018).
Du, C., Yang, G., Zhang, T. & Yang, Q. Multiscale study of the influence of promoters on low-plasticity clay stabilized with cement-based composites. Constr. Build. Mater. 213, 537–548 (2019).
Bureau of Indian Standard. IS 2720 (Part I-XL) Methods of Test for Soils.
ASTM. D747-10: Standard Test Method for Apparent Bending Modulus of Plastics by Means of a Cantilever Beam 1., https://doi.org/10.1520/D0747-10 .
Committee, D. ASTM D792-08 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement., https://doi.org/10.1520/D0792-13 (1900).
ASTM., A. S. for T. and M. Designation. D638-14 Standard test Method for Tensile Properties of Plastics. Astm 82, 1–15 (2014).
ASTM D7138 - 16 Standard Test Method to Determine Melting Temperature of Synthetic Fibers, https://www.astm.org/Standards/D7138.htm.
ASTM E3020 - 16a Standard Practice for Ignition Sources, https://www.astm.org/Standards/E3020.htm .
ASTM D3800-99. Standard Test Method for Density of High-Modulus Fibers. ASTM lnternational 6, https://doi.org/10.1520/D3800-16 (2016).
ASTM D5103 - 07(2018) Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test), https://www.astm.org/Standards/D5103.htm .
ASTM C1012 / C1012M - 18b Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, https://www.astm.org/Standards/C1012.htm .
ASTM C563 - 07 Standard Test Method for Approximation of Optimum SO3 in Hydraulic Cement Using Compressive Strength, https://www.astm.org/DATABASE.CART/HISTORICAL/C563-07.htm .
ASTM C1240 - 20 Standard Specification for Silica Fume Used in Cementitious Mixtures, https://www.astm.org/Standards/C1240 .
ASTM E1621 - 13 Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry, https://www.astm.org/Standards/E1621.htm .

Auteurs

Nitin Tiwari (N)

Discipline of Civil Engineering, Indian Institute of Technology Indore, Indore, India. phd1801204006@iiti.ac.in.

Neelima Satyam (N)

Discipline of Civil Engineering, Indian Institute of Technology Indore, Indore, India.

Kundan Singh (K)

Discipline of Civil Engineering, Indian Institute of Technology Indore, Indore, India.

Classifications MeSH