Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
07 2020
Historique:
received: 20 02 2020
accepted: 27 04 2020
pubmed: 8 5 2020
medline: 16 2 2021
entrez: 8 5 2020
Statut: ppublish

Résumé

The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r

Identifiants

pubmed: 32378201
doi: 10.1113/JP279054
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2557-2573

Informations de copyright

© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.

Références

Acharya G, Räsänen J, Mäkikallio K, Erkinaro T, Kavasmaa T, Haapsamo M, Mertens L & Huhta JC (2008). Metabolic acidosis decreases fetal myocardial isovolumic velocities in a chronic sheep model of increased placental vascular resistance. Am J Physiol Heart Circ Physiol 294, H498-H504.
van Amerom JFP, Lloyd DFA, Price AN, Kuklisova Murgasova M, Aljabar P, Malik SJ, Lohezic M, Rutherford MA, Pushparajah K, Razavi R & Hajnal JV (2018). Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med 79, 327-338.
Beerbaum P, Körperich H, Barth P, Esdorn H, Gieseke J & Meyer H (2001). Noninvasive quantification of left-to-right shunt in pediatric patients: Phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103, 2476-2482.
Beerbaum P, Körperich H, Gieseke J, Barth P, Peuster M & Meyer H (2005). Blood flow quantification in adults by phase-contrast MRI combined with SENSE-a validation study. J Cardiovasc Magn Reson 7, 361-369.
Biehl DR, Yarnell R, Wade JG & Sitar D (1983). The uptake of ISO-flurane by the foetal lamb in utero: effect on regional blood flow. Can Anaesth Soc J 30, 581-586.
Botting K, Wang K, Padhee M, McMillen I, Summers-Pearce B, Rattanatray L, Cutri N, Posterino G, Brooks D & Morrison J (2012). Early origins of heart disease: Low birth weight and determinants of cardiomyocyte endowment. Clin Exp Pharmacol Physiol 39, 814-823.
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA & Giussani DA (2015). Induction of controlled hypoxic pregnancy in large mammalian species. Physiol Rep 3, 1-13.
Bromley B, Estroff JA, Sanders SP, Parad R, Roberts D, Frigoletto FD & Benacerraf BR (1992). Fetal echocardiography: accuracy and limitations in a population at high and low risk for heart defects. Am J Obstet Gynecol 166, 1473-1481.
Buechel EV, Kaiser T, Jackson C, Schmitz A & Kellenberger CJ (2009). Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9, 1-9.
Chaptinel J, Yerly J, Mivelaz Y, Prsa M, Alamo L, Vial Y, Berchier G, Rohner C, Gudinchet F & Stuber M (2017). Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep 7, 1-10.
Danielson L, McMillen IC, Dyer JL & Morrison JL (2005). Restriction of placental growth results in greater hypotensive response to α-adrenergic blockade in fetal sheep during late gestation. J Physiol 563, 611-620.
Darby JRT, Saini BS, Soo JY, Lock MC, Holman SL, Bradshaw EL, McInnes SJP, Voelcker NH, Macgowan CK, Seed M, Wiese MD & Morrison JL (2019). Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. J Physiol 597, 5063-5077.
Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I & Reichek N (1986). Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol 57, 450-458.
Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn L V., Perumal SR, Macgowan CK, Selvanayagam JB, Morrison JL & Seed M (2019). Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Integr Comp Physiol 317, R780-R792.
Duan AQ, Lock MC, Perumal SR, Darby JR, Soo JY, Selvanayagam JB, Macgowan CK, Seed M & Morrison JL (2017). Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging. J Cardiovasc Magn Reson 19, 1-11.
Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, Yoo SJ & Powell AJ (2013). Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15, 1-26.
Fuchs A, Mejdahl MR, Kühl JT, Stisen ZR, Nilsson EJP, Køber LV, Nordestgaard BG & Kofoed KF (2016). Normal values of left ventricularmass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging 17, 1009-1017.
Gandy SJ, Waugh SA, Nicholas RS, Simpson HJ, Milne W & Houston JG (2008). Comparison of the reproducibility of quantitative cardiac left ventricular assessments in healthy volunteers using different MRI scanners: A multicenter simulation. J Magn Reson Imaging 28, 359-365.
Gheorghe AG, Fuchs A, Jacobsen C, Kofoed KF, Møgelvang R, Lynnerup N & Banner J (2019). Cardiac left ventricular myocardial tissue density, evaluated by computed tomography and autopsy. BMC Med Imaging; https://doi.org/10.1186/s12880-019-0326-4.
Grundy D (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Exp Physiol 100, 755-758.
Guo LN, Chai YQ, Guo S & Zhang ZK (2019). Prediction of neonatal acidosis using the cerebroplacental ratio at different gestational weeks: A case-control study. Medicine (Baltimore) 98, e16458.
Han F, Rapacchi S & Hu P (2017). Prospective cardiac motion self-gating. Quant Imaging Med Surg 7, 215-226.
Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, Hansson SR, Arheden H & Aletras AH (2017). Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study. J Magn Reson Imaging 46, 207-217.
Hindsø L, Fuchs A, Kühl JT, Nilsson EJP, Sigvardsen PE, Køber L, Nordestgaard BG & Kofoed KF (2017). Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study. Int J Cardiovasc Imaging 33, 421-429.
Hoppeler H, Lindstedt SL, Claassen H, Taylor CR, Mathieu O & Weibel ER (1984). Scaling mitochondrial volume in heart to body mass. Respir Physiol 55, 131-137.
Jackowski C, Schweitzer W, Thali M, Yen K, Aghayev E, Sonnenschein M, Vock P & Dirnhofer R (2005). Virtopsy: Postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci Int 149, 11-23.
James SH, Wald R, Wintersperger BJ, Jimenez-Juan L, Deva D, Crean AM, Nguyen E, Paul NS & Ley S (2013). Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: Intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements. Can Assoc Radiol J 64, 213-219.
Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J & Bluemke DA (2015). Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17, 29.
Kirschbaum SW, Baks T, Gronenschild EH, Aben JP, Weustink AC, Wielopolski PA, Krestin GP, De Feyter PJ & Van Geuns RJM (2008). Addition of the long-axis information to short-axis contours reduces interstudy variability of left-ventricular analysis in cardiac magnetic resonance studies. Invest Radiol 43, 1-6.
Kording F, Yamamura J, De Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H & Schoennagel BP (2018). Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 20, 1-10.
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, St John Sutton M & Stewart WJ (2005). Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18, 1440-1463.
Lee JT, Munch KR, Carlis J V, Pardo J V, Engblom H, Arheden H, Jolesz F, Black P, Wells W & Verani M (2008). Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Med Imaging 8, 10.
Lewinsky RM, Szwarc RS, Benson LN & Knox Ritchie JW (1993). The effects of hypoxic acidemia on left ventricular end-systolic Elastance in fetal sheep. Pediatr Res 34, 38-43.
Lloyd DFA, Van Amerom JFP, Pushparajah K, Simpson JM, Zidere V, Miller O, Sharland G, Allsop J, Fox M, Lohezic M, Murgasova M, Malamateniou C, Hajnal J V, Rutherford M & Razavi R (2016). An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn 36, 916-925.
Lloyd DFA, Pushparajah K, Simpson JM, Van Amerom JFP, Van Poppel MPM, Schulz A, Kainz B, Deprez M, Lohezic M, Allsop J, Mathur S, Bellsham-revell H, Vigneswaran T, Charakida M & Miller O (2019). Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 393, 1619-1627.
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL & Morrison JL (2019). Differential response to injury in fetal and adolescent sheep hearts in the immediate post-myocardial infarction period. Front Physiol 10, 1-24.
Lock MC, Tellam RL, Botting KJ, Wang KCW, Selvanayagam JB, Brooks DA, Seed M & Morrison JL (2018). The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 596, 5625-5640.
Lotz J, Meier C, Leppert A & Galanski M (2002). Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. RadioGraphics 22, 651-671.
Marini D & Van Amerom J (2019). MR Imaging of the fetal heart. J Magn Reson Imaging 51, 1030-1044.
Meyer-Wittkopf M, Cook A, McLennan A, Summers P, Sharland GK & Maxwell DJ (1996). Evaluation of three-dimensional ultrasonography and magnetic resonance imaging in assessment of congenital heart anomalies in fetal cardiac specimens. Ultrasound Obstet Gynecol 8, 303-308.
Mitchell JH, Wildenthal K, Johnson RL & Pauline J (1972). The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int 1, 375-389.
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY & Tellam RL (2018). Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Integr Comp Physiol 315, R1123-R1153.
Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL & McMillen IC (2007). Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Integr Comp Physiol 293, R306-R313.
Morrison JL, Chien C, Gruber N, Rurak D & Riggs W (2001). Fetal behavioural state changes following maternal fluoxetine infusion in sheep. Brain Res Dev Brain Res 131, 47-56.
Morrison JL, Chien C, Riggs KW, Gruber N & Rurak D (2002). Effect of maternal fluoxetine administration on uterine blood flow, fetal blood gas status, and growth. Pediatr Res 51, 433-442.
National Health and Medical Research Council (2013). Australian code of practice for the care and use of animals for scientific purposes. Aust Vet J 76, 286.
Palahniuk RJ & Shnider SM (1974). Maternal and fetal cardiovascular and acid base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology 41, 462-472.
Pearson JF (1976). Fetal blood sampling and gas exchange. J Clin Pathol 29, 31-34.
Pelc NJ, Herfkens RJ, Shimakawa A & Enzmann DR (1991). Phase contrast cine magnetic resonance imaging. Magn Reson Q 7, 229-254.
Pennell DJ (2002). Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 4, 507-513.
Poudel R, McMillen IC, Dunn SL, Zhang S & Morrison JL (2015). Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Integr Comp Physiol 308, R151-R162.
Powell AJ, Maier SE, Chung T & Geva T (2000). Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: In vitro and in vivo validation. Pediatr Cardiol 21, 104-110.
Prsa M, Sun L, Van Amerom J, Yoo SJ, Grosse-Wortmann L, Jaeggi E, MacGowan C & Seed M (2014). Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging 7, 663-670.
Quick S, Waessnig N, Sommer P, Heidrich FM, Pfluecke C, Ibrahim K, Strasser R, Speiser U & Wiedemann S (2017). Impact of papillary muscles on ventricular function measurements in 3 T cardiac magnetic resonance. Cor Vasa 59, e142-e148.
Rajiah P & Bolen MA (2014). Cardiovascular MR imaging at 3 T: Opportunities, challenges, and solutions. Radiographics 34, 1612-1636.
Roy CW & Macgowan CK (2019). Dynamic MRI of a large fetal cardiac mass. Radiology 290, 288.
Roy CW, Seed M, van Amerom JFP, Al Nafisi B, Grosse-Wortmann L, Yoo S-J & Macgowan CK (2013). Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 70, 1598-1607.
Roy CW, Seed M, Kingdom JC & Macgowan CK (2017). Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson 19, 1-14.
Rudolph AM (2009) Congenital Diseases of the Heart: Clinical-Physiological Considerations. 3rd edn, Wiley-Blackwell.
Rudolph AM (1979). Fetal and neonatal pulmonary circulation. Annu Rev Physiol 41, 383-395.
Rudolph AM & Heymann MA (1967). The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res 21, 163-184.
Russell WMS & Burch RL (1959). The Principles of Humane Experimental Technique. Methuen & CO LTD, London.
Schaper J, Meiser E & Stämmler G (1985). Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56, 377-391.
Schoennagel BP, Remus CC, Yamamura J, Kording F, De Sousa MT, Hecher K, Fischer R, Ueberle F, Boehme M, Adam G, Kooijman H & Wedegaertner U (2014). Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: A pilot study. Magn Reson Mater Physics, Biol Med 27, 237-244.
Schrauben EM, Saini BS, Darby JRT, Soo JY, Lock MC, Stirrat E, Stortz G, Sled JG, Morrison JL, Seed M & Macgowan CK (2019). Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. J Cardiovasc Magn Reson 21, 8.
Seed M, Van Amerom JFP, Yoo SJ, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, Jansz MS & MacGowan CK (2012). Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: A cross-sectional study. J Cardiovasc Magn Reson 14, 1-11.
Sievers B, Kirchberg S, Bakan A, Franken U & Trappe HJ (2004). Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6, 9-16.
Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdom J, Hickey E, Miller S & Seed M (2015). Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131, 1313-1323.
Tavares de Sousa M, Hecher K, Yamamura J, Kording F, Ruprecht C, Fehrs K, Behzadi C, Adam G & Schoennagel BP (2019). Dynamic fetal cardiac magnetic resonance imaging in four-chamber view using Doppler ultrasound gating in normal fetal heart and in congenital heart disease: comparison with fetal echocardiography. Ultrasound Obstet Gynecol 53, 669-675.
Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G & Fleck E (2001). Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14, 362-367.
Toemen L, Gaillard R, Roest AA, van der Geest RJ, Steegers EA, van der Lugt A, Helbing WA & Jaddoe VW (2019). Fetal and infant growth patterns and left and right ventricular measures in childhood assessed by cardiac MRI. Eur J Prev Cardiol 27, 63-74.
Tsai-Goodman B, Zhu MY, Al-Rujaib M, Seed M & Macgowan CK (2015). Foetal blood flow measured using phase contrast cardiovascular magnetic resonance - Preliminary data comparing 1.5 T with 3.0 T. J Cardiovasc Magn Reson 17, 4-9.
Varcoe TJ, Darby JRT, Gatford KL, Holman SL, Cheung P, Berry MJ, Wiese MD & Morrison JL (2019). Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery. Anim Front 9, 60-67.
Votino C, Jani J, Damry N, Dessy H, Kang X, Cos T, Divano L, Foulon W, De Mey J & Cannie M (2012). Magnetic resonance imaging in the normal fetal heart and in congenital heart disease. Ultrasound Obstet Gynecol 39, 322-329.
Walley KR, Lewis TH & Wood LDH (1990). Acute respiratory acidosis decreases left ventricular contractility but increases cardiac output in dogs. Circ Res 67, 628-635.
Wang KCW, Brooks DA, Thornburg KL & Morrison JL (2012). Activation of IGF-2R stimulates cardiomyocyte hypertrophy in the late gestation sheep fetus. J Physiol 590, 5425-5437.
Webb AI & Weaver BM (1979). The density of equine tissue at 37 degrees C. Res Vet Sci 26, 71-75.
Yamamura J, Frisch M, Ecker H, Graessner J, Hecher K & Adam G (2011). Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering. Eur Radiol 21, 142-149.
Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G & Wedegärtner U (2012). Cardiac MRI of the fetal heart using a novel triggering method: Initial results in an animal model. J Magn Reson Imaging 35, 1071-1076.
Yamamura J, Schnackenburg B, Kooijmann H, Frisch M, Hecher K, Adam G & Wedegärtner U (2009). High resolution MR imaging of the fetal heart with cardiac triggering: A feasibility study in the sheep fetus. Eur Radiol 19, 2383-2390.
Yipintsoi T, Scanlon PD & Bassingthwaighte JB (1972). Density and water content of dog ventricular myocardium. Proc Soc Exp Biol Med 141, 1032-1035.
Zhu MY, Milligan N, Keating S, Windrim R, Keunen J, Thakur V, Ohman A, Portnoy S, Sled JG, Kelly E, Yoo SJ, Gross-Wortmann L, Jaeggi E, MacGowan CK, Kingdom JC & Seed M (2016). The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol 214, 367.e1-367.e17.

Auteurs

Steven K S Cho (SKS)

Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
Division of Cardiology, Hospital for Sick Children, Toronto, Canada.

Jack R T Darby (JRT)

Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.

Brahmdeep S Saini (BS)

Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.
Division of Cardiology, Hospital for Sick Children, Toronto, Canada.

Mitchell C Lock (MC)

Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.

Stacey L Holman (SL)

Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.

Jessie Mei Lim (JM)

Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Division of Cardiology, Hospital for Sick Children, Toronto, Canada.

Sunthara Rajan Perumal (SR)

Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia.

Christopher K Macgowan (CK)

Translational Medicine, Hospital for Sick Children, Toronto, Canada.
Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.

Janna L Morrison (JL)

Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.

Mike Seed (M)

Division of Cardiology, Hospital for Sick Children, Toronto, Canada.
Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH