Omnivorous ants are less carnivorous and more protein-limited in exotic plantations.

ants ecosystem functions food exploitation macronutrient limitation omnivores plantations trophic interactions tropical forests

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
08 2020
Historique:
received: 28 08 2019
accepted: 27 04 2020
pubmed: 8 5 2020
medline: 20 3 2021
entrez: 8 5 2020
Statut: ppublish

Résumé

Diets of species are crucial in determining how they influence food webs and community structures, and how their populations are regulated by different bottom-up processes. Omnivores are able to adjust their diet flexibly according to environmental conditions, such that their impacts on food webs and communities, and the macronutrients constraining their population, can be plastic. In particular, omnivore diets are known to be influenced by prey availability, which exhibits high spatial and temporal variation. To examine the plasticity of diet and macronutrient limitation in omnivores, we compared trophic positions, macronutrient preferences and food exploitation rates of omnivorous ants in invertebrate-rich (secondary forests) and invertebrate-poor (Lophostemon confertus plantations) habitats. We hypothesized that omnivorous ants would have lower trophic positions, enhanced protein limitation and reduced food exploitation rates in L. confertus plantations relative to secondary forests. We performed cafeteria experiments to examine changes in macronutrient limitation and food exploitation rates. We also sampled ants and conducted stable isotope analyses to investigate dietary shifts between these habitats. We found that conspecific ants were less carnivorous and had higher preferences for protein-rich food in L. confertus plantations compared to secondary forests. However, ant assemblages did not exhibit increased preferences for protein-rich food in L. confertus plantations. At the species-level, food exploitation rates varied idiosyncratically between habitats. At the assemblage-level, food exploitation rates were reduced in L. confertus plantations. Our results reveal that plantation establishments alter the diet and foraging behaviour of omnivorous ants. Such changes suggest that omnivorous ants in plantations will have reduced top-down impacts on prey communities but also see an increased importance of protein as a bottom-up force in constraining omnivore population sizes.

Identifiants

pubmed: 32379899
doi: 10.1111/1365-2656.13249
doi:

Banques de données

Dryad
['10.5061/dryad.wstqjq2hk']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1941-1951

Informations de copyright

© 2020 British Ecological Society.

Références

Aron, S., Keller, L., & Passera, L. (2001). Role of resource availability on sex, caste and reproductive allocation ratios in the Argentine ant Linepithema humile. Journal of Animal Ecology, 70, 831-839. https://doi.org/10.1046/j.0021-8790.2001.00545.x
Brousseau, P.-M., Gravel, D., & Handa, I. T. (2019). Traits of litter-dwelling forest arthropod predators and detritvores covary spatially with traits of their resources. Ecology, 100, e02815. https://doi.org/10.1002/ecy.2815
Brown de Colstoun, E. C., Huang, C., Wang, P., Tilton, J. C., Tan, B., Philips, J., … Wolfe, R. E. (2017). Global Man-made Impervious Surface (GMIS) dataset from Landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
Cao, H. X., Klein, A. M., Zhu, C., Staab, M., Durka, W., Fischer, M., & Fornoff, F. (2018). Intra- and interspecific tree diversity promotes multitrophic plant-Hemiptera-ant interactions in a forest diversity experiment. Basic and Applied Ecology, 29, 89-97. https://doi.org/10.1016/j.baae.2018.03.005
Cardinale, B. J., Srivastava, D. S., Emmett Duffy, J., Wright, J. P., Downing, A. L., Sankaran, M., & Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992. https://doi.org/10.1038/nature05202
Clark, R. E., & Singer, M. S. (2018). Keystone mutualism strengthens top-down effects by recruiting large-bodied ants. Oecologia, 186, 601-610. https://doi.org/10.1007/s00442-017-4047-5
Clay, N. A., Lehrter, R. J., & Kaspari, M. (2017). Towards a geography of omnivory: Omnivores increase carnivory when sodium is limiting. Journal of Animal Ecology, 86, 1523-1531. https://doi.org/10.1111/1365-2656.12754
Coll, M., & Guershon, M. (2002). Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annual Review of Entomology, 47, 267-297. https://doi.org/10.1146/annurev.ento.47.091201.145209
Corlett, R. T. (1999). Environmental forestry in Hong Kong: 1871-1997. Forest Ecology and Management, 116, 93-105. https://doi.org/10.1016/S0378-1127(98)00443-5
Cronin, A. L., Donnerhack, O., Seidel, F., & Yamanaka, T. (2015). Fine-scale variation in natural nitrogen isotope ratios of ants. Entomologia Experimentalis et Applicata, 157, 354-359. https://doi.org/10.1111/eea.12370
Dussutour, A., & Simpson, S. J. (2012). Ant workers die young and colonies collapse when fed a high-protein diet. Proceedings of the Royal Society of London B: Biological Sciences, 279, 2402-2408. https://doi.org/10.1098/rspb.2012.0051
Eguchi, K. (2008). A revision of Northern Vietnamese species of the ant genus Pheidole (Insecta: Hymenoptera: Formicidae: Myrmicinae). Zootaxa, 1902, 1-118. https://doi.org/10.11646/zootaxa.1902.1.1
Eguchi, K., Bui, T. V., & Yamane, S. (2004). A preliminary study on foraging distance and nesting sites of ants in Indo-Chinese lowland vegetation (Insecta, Hymenoptera, Formicidae). Sociobiology, 43, 445-458.
Fellowes. (1996). Community composition of Hong Kong ants: Spatial and seasonal patterns (PhD thesis). The University of Hong Kong.
Forkner, R. E., & Hunter, M. D. (2000). What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology, 81, 1588-1600. https://doi.org/10.1890/0012-9658(2000)081[1588:WGUMCD]2.0.CO;2
Foster, W. A., Snaddon, J. L., Turner, E. C., Fayle, T. M., Cockerill, T. D., Farnon Ellwood, M. F., … Yusah, K. M. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3277-3291. https://doi.org/10.1098/rstb.2011.0041
Gibb, H., & Cunningham, S. A. (2011). Habitat contrasts reveal a shift in the trophic position of ant assemblages. Journal of Animal Ecology, 80, 119-127. https://doi.org/10.1111/j.1365-2656.2010.01747.x
Gray, C. L., Lewis, O. T., Chung, A. Y., & Fayle, T. M. (2015). Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates. Journal of Applied Ecology, 52, 31-40. https://doi.org/10.1111/1365-2664.12371
Griffiths, H. M., Ashton, L. A., Walker, A. E., Hasan, F., Evans, T. A., Eggleton, P., & Parr, C. L. (2018). Ants are the major agents of resource removal from tropical rainforests. Journal of Animal Ecology, 87, 293-300. https://doi.org/10.1111/1365-2656.12728
Grover, C. D., Kay, A. D., Monson, J. A., Marsh, T. C., & Holway, D. A. (2007). Linking nutrition and behavioural dominance: Carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2951-2957. https://doi.org/10.1098/rspb.2007.1065
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156. https://doi.org/10.2307/177062
John, J. A., & Draper, N. R. (1980). An alternative family of transformations. Applied Statistics, 29, 190-197. https://doi.org/10.2307/2986305
Kaspari, M., Yanoviak, S. P., & Dudley, R. (2008). On the biogeography of salt limitation: A study of ant communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 17848-17851. https://doi.org/10.1073/pnas.0804528105
Kay, A. (2004). The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behavioral Ecology, 15, 63-70. https://doi.org/10.1093/beheco/arg106
Kay, A. D., Rostampour, S., & Sterner, R. W. (2006). Ant-stochiometry: Elemental homeostatsis in stage-structured colonies. Functional Ecology, 20, 1037-1044. https://doi.org/10.1111/j.1365-2435.2006.01187.x
Kratina, P., LeCraw, R. M., Ingram, T., & Anholt, B. R. (2012). Stability and persistence of food webs with omnivory: Is there a general pattern? Ecosphere, 3, 1-18. https://doi.org/10.1890/ES12-00121.1
Kwok, H. K. (1996). Seasonality of forest birds in Hong Kong (PhD thesis). The University of Hong Kong.
Laakso, J., Setälä, H., & Setala, H. (1998). Composition and trophic structure of detrital food web in ant nest mounds of Formica aquilonia and in the surrounding forest soil. Oikos, 81, 266-278. https://doi.org/10.2307/3547047
Latty, T., & Beekman, M. (2013). Keeping track of changes: The performance of ant colonies in dynamic environments. Animal Behaviour, 85, 637-643. https://doi.org/10.1016/j.anbehav.2012.12.027
Lee, E. W. S., Hau, B. C. H., & Corlett, R. T. (2005). Natural regeneration in exotic tree plantations in Hong Kong, China. Forest Ecology and Management, 212, 358-366. https://doi.org/10.1016/j.foreco.2005.03.057
Mabelis, A. (1984). Aggression in wood ants (Formica polyctena Forest., Hymenoptera, Formicidae). Aggressive Behavior, 10, 47-53. https://doi.org/10.1002/1098-2337(1984)10:1<47:AID-AB2480100107>3.0.CO;2-N
Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J., & Raubenheimer, D. (2016). The multidimensional nutritional niche. Trends in Ecology & Evolution, 31, 355-365. https://doi.org/10.1016/j.tree.2016.02.009
Markin, G. P. (1970). Food distribution within laboratory colonies of the Argentine ant, Iridomyrmex humilis (Mayr). Insectes Sociaux, 17, 127-157. https://doi.org/10.1007/bf02223074
McCary, M. A., Mores, R., Farfan, M. A., & Wise, D. H. (2016). Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: A meta-analysis. Ecology Letters, 19, 328-335. https://doi.org/10.1111/ele.12562
McCauley, D. J., Gellner, G., Martinez, N. D., Williams, R. J., Sandin, S. A., Micheli, F., … McCann, K. S. (2018). On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecology Letters, 21, 439-454. https://doi.org/10.1111/ele.12900
McGlynn, T. P., Fawcett, R. M., & Clark, D. A. (2009). Litter biomass and nutrient determinants of ant density, nest size, and growth in a Costa Rican tropical wet forest. Biotropica, 41, 234-240. https://doi.org/10.1111/j.1744-7429.2008.00465.x
McMeans, B. C., Kadoya, T., Pool, T. K., Holtgrieve, G. W., Lek, S., Kong, H., … McCann, K. S. (2019). Consumer trophic positions respond variably to seasonally fluctuating environments. Ecology, 100, e02570. https://doi.org/10.1002/ecy.2570
Michelsen, A., Lisanework, N., Friis, I., & Holst, N. (1996). Comparisons of understorey vegetation and soil fertility in plantations and adjacent natural forests in the Ethiopian highlands. Journal of Applied Ecology, 33, 627-642. https://doi.org/10.2307/2404991
Nelson, A. S., Pratt, R. T., Pratt, J. D., Smith, R. A., Symanski, C. T., Prenot, C., & Mooney, K. A. (2019). Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant-aphid mutualism strength. Oikos, 128, 540-550. https://doi.org/10.1111/oik.05650
Ness, J. H., Morris, W. F., & Bronstein, J. L. (2009). For ant-protected plants, the best defense is a hungry offense. Ecology, 90, 2823-2831. https://doi.org/10.1890/08-1580.1
Orłowski, G., Mróz, L., Kadej, M., Smolis, A., Tarnawski, D., Karg, J., … Mader, D. (2020). Breaking down insect stoichiometry into chitin-based and internal elemental traits: Patterns and correlates of continent-wide intraspecific variation in the largest European saproxylic beetle. Environmental Pollution, 262, 114064. https://doi.org/10.1016/j.envpol.2020.114064
Peeters, C., Molet, M., Lin, C. C., & Billen, J. (2017). Evolution of cheaper workers in ants: A comparative study of exoskeletion thickness. Biological Journal of the Linnean Society, 121, 556-563. https://doi.org/10.1093/biolinnean/blx011
Penick, C. A., Savage, A. M., & Dunn, R. R. (2015). Stable isotopes reveal links between human food and urban ant diets. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142608. https://doi.org/10.1098/rspb.2014.2608
Pimm, S., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542-544. https://doi.org/10.1038/275542a0
Pollierer, M. M., Langel, R., Scheu, S., & Maraun, M. (2009). Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biology and Biochemistry, 41, 1221-1226. https://doi.org/10.1016/j.soilbio.2009.03.002
Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Raubenheimer, D., & Simpson, S. J. (2018). Nutritional ecology and foraging theory. Current Opinion in Insect Science, 27, 38-45. https://doi.org/10.1016/j.cois.2018.02.002
Raubenheimer, D., Simpson, S. J., & Mayntz, D. (2009). Nutrition, ecology and nutritional ecology: Toward an integrated framework. Functional Ecology, 23, 4-16. https://doi.org/10.1111/j.1365-2435.2008.01522.x
Raubenheimer, D., Simpson, S. J., & Tait, A. H. (2012). Match and mismatch: Conservation physiology, nutritional ecology and the timescales of biological adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1628-1646. https://doi.org/10.1098/rstb.2012.0007
Rice, W. R., & Gaines, S. D. (1994). ‘Heads I win, tails you lose’: Testing directional alternative hypotheses in ecological and evolutionary research. Trends in Ecology & Evolution, 9, 235-237. https://doi.org/10.1016/0169-5347(94)90258-5
Roeder, K. A., & Kaspari, M. (2017). From cryptic herbivore to predator: Stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology, 98, 297-303. https://doi.org/10.1002/ecy.1641
Sanders, D., & Platner, C. (2007). Intraguild interactinos between spiders and ants and top-down control in a grassland food web. Oecologia, 150, 611-624. https://doi.org/10.1007/s00442-006-0538-5
Schuldt, A., Fornoff, F., Bruelheide, H., Klein, A. M., & Staab, M. (2017). Tree species richness attenudates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20171489. https://doi.org/10.1098/rspb.2017.1489
Senior, M. J. M., Hamer, K. C., Bottrell, S., Edwards, D. P., Fayle, T. M., Lucey, J. M., … Hill, J. K. (2013). Trait-dependent declines of species following conversion of rain forest to oil palm plantations. Biodiversity and Conservation, 22, 253-268. https://doi.org/10.1007/s10531-012-0419-7
Shik, J. Z., & Kaspari, M. (2010). More food, less habitat: How necromass and leaf litter decompositon combine to regulate a litter ant community. Ecological Entomology, 35, 158-165. https://doi.org/10.1111/j.1365-2311.2009.01165.x
Shik, J. Z., Kay, A. D., & Silverman, J. (2014). Aphid honeydew provides a nutritionally balanced resource for incipient Argentine ant mutualists. Animal Behaviour, 95, 33-39. https://doi.org/10.1016/j.anbehav.2014.06.008
Stephens, D. W., Brown, J. S., & Yidenberg, R. C. (2006). Foraging: Behavior and ecology. Chicago, IL: The University of Chicago Press.
Stradling, D. J. (1978). Food and feeding habits of ants. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 81-107). London, UK: Cambridge University Press.
Terayama, M. (2009). A synopsis of the family Formicidae of Taiwan (Insecta: Hymenoptera). Research Bulletin of Kanto Gakuen University. Liberal Arts, 17, 81-266.
Thompson, R. M., Hemberg, M., Starzomski, B. M., & Shurin, J. B. (2007). Trophic levels and trophic tangles: The prevalence of omnivory in real food webs. Ecology, 88, 612-617. https://doi.org/10.1890/05-1454
Tillberg, C. V., McCarthy, D. P., Dolezal, A. G., & Suarez, A. V. (2006). Measuring the trophic ecology of ants using stable isotopes. Insectes Sociaux, 53, 65-69. https://doi.org/10.1007/s00040-005-0836-7
Tsang, T. P. N., Guénard, B., & Bonebrake, T. C. (2020). Data from: Omnivorous ants are less carnivorous and more protein-limited in exotic plantations. Dryad Digital Repository, https://doi.org/10.5061/dryad.wstqjq2hk
Vandermeer, J. (2006). Omnivory and the stability of food webs. Journal of Theoretical Biology, 238, 497-504. https://doi.org/10.1016/j.jtbi.2005.06.006
Vincent, J. F., & Wegst, U. G. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33, 187-199. https://doi.org/10.1016/j.asd.2004.05.006
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B., & Koh, L. P. (2013). Navjot's nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution, 28, 531-540. https://doi.org/10.1016/j.tree.2013.04.005
Wilder, S. M., Barnes, C. L., & Hawlena, D. (2019). Predicting predator nutrient intake from prey body contents. Frontiers in Ecology and Evolution, 7, 1-7. https://doi.org/10.3389/fevo.2019.00042
Wilder, S. M., Holway, D. A., Suarez, A. V., & Eubanks, M. D. (2011). Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology, 92, 325-332. https://doi.org/10.1890/10-0623.1
Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D., & Simpson, S. J. (2013). Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecology Letters, 16, 895-902. https://doi.org/10.1111/ele.12116
Woods, H. A., Fagan, W. F., Elser, J. J., & Harrison, J. F. (2004). Allometric and phylogenetic variation in insect phosphorus content. Functional Ecology, 18, 103-109. https://doi.org/10.1111/j.1365-2435.2004.00823.x
Yuen, E. Y. L., & Dudgeon, D. (2016). Dietary dependence of predatory arthropods on volant aquatic insects in tropical stream riparia. Biotropica, 48, 218-228. https://doi.org/10.1111/btp.12271

Auteurs

Toby P N Tsang (TPN)

School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China.

Benoit Guénard (B)

School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China.

Timothy C Bonebrake (TC)

School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH