Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease.
Alzheimer’s disease
FACS
MACS
Mass spectrometry
Microglia
Proteomics
Journal
Molecular neurodegeneration
ISSN: 1750-1326
Titre abrégé: Mol Neurodegener
Pays: England
ID NLM: 101266600
Informations de publication
Date de publication:
07 05 2020
07 05 2020
Historique:
received:
04
12
2019
accepted:
24
04
2020
entrez:
9
5
2020
pubmed:
10
5
2020
medline:
2
7
2021
Statut:
epublish
Résumé
Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
Sections du résumé
BACKGROUND
Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies.
METHODS
We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies.
RESULTS
Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction.
CONCLUSIONS
Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
Identifiants
pubmed: 32381088
doi: 10.1186/s13024-020-00377-5
pii: 10.1186/s13024-020-00377-5
pmc: PMC7206797
doi:
Substances chimiques
Microfilament Proteins
0
moesin
144131-77-1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
28Subventions
Organisme : NIA NIH HHS
ID : R01 AG057911
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG053960
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG056781
Pays : United States
Organisme : NIA NIH HHS
ID : F32 AG064862
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG025688
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG057471
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002378
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG057470
Pays : United States
Organisme : NINDS NIH HHS
ID : K08 NS099474
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS055077
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046161
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG061357
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008433
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG062181
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG061800
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS114130
Pays : United States
Références
Mol Neurodegener. 2018 Jan 16;13(1):2
pubmed: 29338754
Am J Pathol. 2008 Dec;173(6):1768-82
pubmed: 18974297
Acta Neuropathol. 2006 Oct;112(4):389-404
pubmed: 16906426
Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8297-301
pubmed: 1924289
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1738-46
pubmed: 26884166
Cell Syst. 2017 Jan 25;4(1):60-72.e4
pubmed: 27989508
Nat Genet. 2013 Dec;45(12):1452-8
pubmed: 24162737
Nat Med. 2020 May;26(5):769-780
pubmed: 32284590
J Neuroinflammation. 2017 May 3;14(1):96
pubmed: 28468668
Nat Rev Mol Cell Biol. 2002 Aug;3(8):586-99
pubmed: 12154370
Nat Immunol. 2004 Mar;5(3):272-9
pubmed: 14758359
Nat Neurosci. 2015 Dec;18(12):1819-31
pubmed: 26523646
FEBS Lett. 1999 Jan 22;443(1):31-6
pubmed: 9928947
Cell. 2017 Jun 15;169(7):1276-1290.e17
pubmed: 28602351
J Neurosci. 2014 Sep 3;34(36):11929-47
pubmed: 25186741
Curr Alzheimer Res. 2017;14(4):412-425
pubmed: 27697064
Clin Neuropsychol. 2015;29(7):1002-9
pubmed: 26617181
Neurosci Lett. 1990 Oct 30;119(1):32-6
pubmed: 2097581
Immunity. 2019 Jan 15;50(1):253-271.e6
pubmed: 30471926
Proteomics. 2019 Jun;19(11):e1800469
pubmed: 30980500
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6820-5
pubmed: 19346482
Front Mol Neurosci. 2018 Dec 18;11:454
pubmed: 30618606
Neuron. 2020 Mar 18;105(6):975-991.e7
pubmed: 31926610
J Cell Sci. 1993 Aug;105 ( Pt 4):1025-43
pubmed: 8227193
Nat Neurosci. 2019 Jan;22(1):78-90
pubmed: 30559476
J Am Med Dir Assoc. 2013 Dec;14(12):877-82
pubmed: 23792036
J Neuroimmune Pharmacol. 2012 Mar;7(1):42-59
pubmed: 21728035
Proc Natl Acad Sci U S A. 1989 Aug;86(16):6348-52
pubmed: 2474832
Anal Chem. 2014 Jul 15;86(14):7150-8
pubmed: 24927332
Mol Neurodegener. 2017 May 26;12(1):43
pubmed: 28549481
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Neuroimmunol. 2020 Apr 15;341:577185
pubmed: 32045774
Sci Data. 2018 Mar 13;5:180036
pubmed: 29533394
Nat Methods. 2007 Nov;4(11):923-5
pubmed: 17952086
Lancet Neurol. 2015 Apr;14(4):388-405
pubmed: 25792098
FEBS Lett. 2009 Dec 17;583(24):3966-73
pubmed: 19850042
Nat Commun. 2019 Aug 21;10(1):3758
pubmed: 31434879
Brain Res. 1998 Aug 10;801(1-2):1-8
pubmed: 9729236
Biochem J. 2009 Dec 14;425(1):265-74
pubmed: 19807693
Glia. 2012 May;60(5):717-27
pubmed: 22290798
Nat Rev Genet. 2012 Mar 13;13(4):227-32
pubmed: 22411467
Cell Rep. 2018 Jan 16;22(3):832-847
pubmed: 29346778
Science. 2017 Jun 23;356(6344):
pubmed: 28546318
Mol Biosyst. 2009 Dec;5(12):1512-26
pubmed: 20023718
Nat Methods. 2011 Oct 02;8(11):937-40
pubmed: 21963607
J Proteome Res. 2013 Jul 5;12(7):3193-206
pubmed: 23768213
J Neuroinflammation. 2017 Jun 26;14(1):128
pubmed: 28651603
Acta Neuropathol. 2017 Jun;133(6):933-954
pubmed: 28258398
J Clin Invest. 2017 Sep 1;127(9):3240-3249
pubmed: 28862638
J Neurosci Methods. 2008 Oct 30;175(1):108-18
pubmed: 18786564
Annu Rev Immunol. 2017 Apr 26;35:441-468
pubmed: 28226226
J Neurosci Methods. 2011 Jan 15;194(2):287-96
pubmed: 21074565
Proc Natl Acad Sci U S A. 1989 Oct;86(19):7611-5
pubmed: 2529544
Mol Neurodegener. 2018 May 21;13(1):24
pubmed: 29784049
Cell Rep. 2013 Jul 25;4(2):385-401
pubmed: 23850290
Mol Neurodegener. 2018 Jun 28;13(1):34
pubmed: 29954413
Glia. 2019 Oct;67(10):1958-1975
pubmed: 31301160
J Neurol Sci. 2001 May 1;186(1-2):87-99
pubmed: 11412877
Cell Rep. 2017 Oct 10;21(2):366-380
pubmed: 29020624
EMBO Mol Med. 2018 Jan;10(1):48-62
pubmed: 29191947
Cell Rep. 2018 Jul 31;24(5):1203-1217.e6
pubmed: 30067976
Alzheimers Dement. 2012 Jan;8(1):1-13
pubmed: 22265587
JCI Insight. 2018 Jul 12;3(13):
pubmed: 29997299
PLoS One. 2014 Jan 13;9(1):e85090
pubmed: 24454796
Blood. 2018 Dec 13;132(24):2580-2593
pubmed: 30322871
Nature. 2019 Feb;566(7744):388-392
pubmed: 30760929
Anal Chem. 2003 Apr 15;75(8):1895-904
pubmed: 12713048
Lipids. 2008 Feb;43(2):161-9
pubmed: 18084788
Cell. 2013 Apr 25;153(3):707-20
pubmed: 23622250
Front Immunol. 2018 Mar 02;9:405
pubmed: 29552013