The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 05 2020
Historique:
received: 14 10 2019
accepted: 24 03 2020
entrez: 9 5 2020
pubmed: 10 5 2020
medline: 24 11 2020
Statut: epublish

Résumé

We investigated the role of dynamic changes of serum levels S100B protein in brain injury and poor outcome of sepsis. This is a prospective cohort study designed to include 104 adult patients with sepsis who are admitted to ICU from Jan 2015 to Aug 2016. Sepsis was defined as sepsis 3.0. Patients with a GCS score of <15, or at least one positive CAM-ICU score were thought to have brain dysfunction. 59 patients were diagnosed with SAE and the rest 45 patients were diagnosed with non-SAE. Serum S100B was measured on day 1 and 3 after ICU admission. Primary outcomes included brain dysfunction and 28-day/180-day mortality. The SAE group showed a significantly higher APACHE II score, SOFA scores, length of ICU stay, 28-day and 180-day mortality, serum S100B levels on day 1 and day 3. S100B levels on day 1 of 0.226 μg/L were diagnostic for SAE with 80.0% specificity and 66.1% sensitivity, and the area under (AUC) the curve was 0.728, S100B levels on day 3 of 0.144 μg/L were diagnostic for SAE with 84.44% specificity and 69.49% sensitivity, and the AUC was 0.819. In addition, the AUC for S100B on day 3 for predicting 180-day mortality was larger than for S100B on day 1 (0.731 vs. 0.611). Multiple logistic regression analysis showed that S100B3 (p = 0.001) but not S100B1 (p = 0.927) were independently correlated with SAE. Kaplan-Meier survival analysis showed that patients with S100B levels higher than 0.144 μg/L had a lower probability of survival at day 180. There were more patients with encephalopathy and a higher 28-day or 180-day mortality in the ΔS100B + group than in the ΔS100B- group. Multiple logistic regression analysis showed that SAE and IL-6 on day 3 were independently correlated with S100B dynamic increase. These findings suggest that elevated serum S100B levels on day 3 and the dynamic changes of serum S100B levels from day three to one were more associated with brain dysfunction and mortality than that on day 1 in patients with sepsis.

Identifiants

pubmed: 32382007
doi: 10.1038/s41598-020-64200-3
pii: 10.1038/s41598-020-64200-3
pmc: PMC7206038
doi:

Substances chimiques

Interleukin-6 0
S100 Calcium Binding Protein beta Subunit 0
S100B protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7718

Références

Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801–810 (2016).
pubmed: 4968574 pmcid: 4968574 doi: 10.1001/jama.2016.0287
Zhang, L. N. et al. Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008-2011. Chin Med J (Engl) 125, 828–831 (2012).
Gofton, T. E. & Young, G. B. Sepsis-associated encephalopathy. Nat Rev Neurol 8, 557–566 (2012).
pubmed: 22986430 doi: 10.1038/nrneurol.2012.183
Schuler, A. et al. The Impact of Acute Organ Dysfunction on Long-Term Survival in Sepsis. Crit Care Med 46, 843–849 (2018).
pubmed: 29432349 pmcid: 5953770 doi: 10.1097/CCM.0000000000003023
Pandharipande, P. P. et al. Long-term cognitive impairment after critical illness. N Engl J Med 369, 1306–1316 (2013).
pubmed: 24088092 pmcid: 3922401 doi: 10.1056/NEJMoa1301372
Eidelman, L. A., Putterman, D., Putterman, C. & Sprung, C. L. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275, 470–473 (1996).
pubmed: 8627969
Sharshar, T., Bozza, F. & Chrétien, F. Neuropathological processes in sepsis. Lancet Neurol 13, 534–536 (2014).
pubmed: 24849853 doi: 10.1016/S1474-4422(14)70064-X
Mazeraud, A. et al. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis. Clin Chest Med 37, 333–345 (2016).
pubmed: 27229649 doi: 10.1016/j.ccm.2016.01.013
Sweis, R., Ortiz, J. & Biller, J. Neurology of Sepsis. Curr Neurol Neurosci Rep 16, 21 (2016).
pubmed: 26820754 doi: 10.1007/s11910-016-0623-z
Hughes, C. G. et al. Endothelial Activation and Blood-Brain Barrier Injury as Risk Factors for Delirium in Critically Ill Patients. Crit Care Med 44, e809–817 (2016).
pubmed: 27088157 pmcid: 4987204 doi: 10.1097/CCM.0000000000001739
Davies, D. C. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200, 639–646 (2002).
pubmed: 12162731 pmcid: 1570752 doi: 10.1046/j.1469-7580.2002.00065.x
Danielski, L. G. et al. Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol 55, 1045–1053 (2018).
pubmed: 28092082 doi: 10.1007/s12035-016-0356-7
Sharshar, T., Polito, A., Checinski, A. & Stevens, R. D. Septic-associated encephalopathy–everything starts at a microlevel. Crit Care 14, 199 (2010).
pubmed: 21067627 pmcid: 3219258 doi: 10.1186/cc9254
Jensen, R., Marshak, D. R., Anderson, C., Lukas, T. J. & Watterson, D. M. Characterization of human brain S100 protein fraction: amino acid sequence of S100 beta. J Neurochem 45, 700–705 (1985).
pubmed: 4031854 doi: 10.1111/j.1471-4159.1985.tb04048.x
Bloomfield, S. M., McKinney, J., Smith, L. & Brisman, J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care 6, 121–138 (2007).
pubmed: 17522796 doi: 10.1007/s12028-007-0008-x
Thelin, E. P., Nelson, D. W. & Bellander, B. M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 159, 209–225 (2017).
doi: 10.1007/s00701-016-3046-3
Monbailliu, T., Goossens, J. & Hachimi-Idrissi, S. Blood protein biomarkers as diagnostic tool for ischemic stroke: a systematic review. Biomark Med 11, 503–512 (2017).
pubmed: 28598212 doi: 10.2217/bmm-2016-0232
Derwall, M., Stoppe, C., Brücken, D., Rossaint, R. & Fries, M. Changes in S-100 protein serum levels in survivors of out-of-hospital cardiac arrest treated with mild therapeutic hypothermia: a prospective, observational study. Crit Care 13, R58 (2009).
pubmed: 19368739 pmcid: 2689505 doi: 10.1186/cc7785
Al Tmimi, L. et al. Serum protein S100 as marker of postoperative delirium after off-pump coronary artery bypass surgery: secondary analysis of two prospective randomized controlled trials. Clin Chem Lab Med 54, 1671–1680 (2016).
pubmed: 26943607 doi: 10.1515/cclm-2015-1012
Nguyen, D. N. et al. Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med 34, 1967–1974 (2006).
pubmed: 16607230 doi: 10.1097/01.CCM.0000217218.51381.49
Hamed, S. A., Hamed, E. A. & Abdella, M. M. Septic encephalopathy: relationship to serum and cerebrospinal fluid levels of adhesion molecules, lipid peroxides and S-100B protein. Neuropediatrics 40, 66–72 (2009).
pubmed: 19809934 doi: 10.1055/s-0029-1231054
Nguyen, D. N. et al. Serum S100B protein could help to detect cerebral complications associated with extracorporeal membrane oxygenation (ECMO). Neurocrit Care 20, 367–374 (2014).
pubmed: 23860667 doi: 10.1007/s12028-013-9874-6
Weigand, M. A. et al. Neuron-specific enolase as a marker of fatal outcome in patients with severe sepsis or septic shock. Anesthesiology 92, 905–907 (2000).
pubmed: 10719986 doi: 10.1097/00000542-200003000-00057
Anderson, B. J. et al. Admission plasma levels of the neuronal injury marker neuron-specific enolase are associated with mortality and delirium in sepsis. J Crit Care 36, 18–23 (2016).
pubmed: 27546742 pmcid: 5096992 doi: 10.1016/j.jcrc.2016.06.012
Piazza, O., Russo, E., Cotena, S., Esposito, G. & Tufano, R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J Anaesth 99, 518–521 (2007).
pubmed: 17650519 doi: 10.1093/bja/aem201
Yao, B., Zhang, L. N., Ai, Y. H., Liu, Z. Y. & Huang, L. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res 39, 1263–1269 (2014).
pubmed: 24760429 doi: 10.1007/s11064-014-1308-0
Panni, J. K. & Panni, M. K. Changes in S100B levels rather than absolute values may be a better marker of severity of septic encephalopathy. Br J Anaesth 100, 419; author reply 419-420 (2008).
Nguyen, D. N. et al. Cortisol is an associated-risk factor of brain dysfunction in patients with severe sepsis and septic shock. Biomed Res Int 2014, 712742 (2014).
pubmed: 24883321 pmcid: 4022165
Ehler, J. et al. Diagnostic value of NT-proCNP compared to NSE and S100B in cerebrospinal fluid and plasma of patients with sepsis-associated encephalopathy. Neurosci Lett 692, 167–173 (2019).
pubmed: 30423400 doi: 10.1016/j.neulet.2018.11.014
Sonneville, R. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med 43, 1075–1084 (2017).
pubmed: 28466149 doi: 10.1007/s00134-017-4807-z
van den Boogaard, M. et al. Endotoxemia-induced inflammation and the effect on the human brain. Crit Care 14, R81 (2010).
pubmed: 20444270 pmcid: 2911704 doi: 10.1186/cc9001
Zenaide, P. V. & Gusmao-Flores, D. Biomarkers in septic encephalopathy: a systematic review of clinical studies. Rev Bras Ter Intensiva 25, 56–62 (2013).
pubmed: 23887761 pmcid: 4031860 doi: 10.1590/S0103-507X2013000100011
Pfister, D. et al. Cerebral perfusion in sepsis-associated delirium. Crit Care 12, R63 (2008).
pubmed: 18457586 pmcid: 2481444 doi: 10.1186/cc6891
Pfister, D. et al. Intracranial pressure in patients with sepsis. Acta Neurochir Suppl 102, 71–75 (2008).
pubmed: 19388291 doi: 10.1007/978-3-211-85578-2_14
Hsu, A. A. et al. Neurological injury markers in children with septic shock. Pediatr Crit Care Med 9, 245–251 (2008).
pubmed: 18446104 doi: 10.1097/PCC.0b013e3181727b22
Jorge-Ripper, C. et al. Prognostic value of acute delirium recovery in older adults. Geriatr Gerontol Int 17, 1161–1167 (2017).
pubmed: 27436624 doi: 10.1111/ggi.12842
Ercole, A., Thelin, E. P., Holst, A., Bellander, B. M. & Nelson, D. W. Kinetic modelling of serum S100b after traumatic brain injury. BMC Neurol 16, 93 (2016).
pubmed: 27315805 pmcid: 4912776 doi: 10.1186/s12883-016-0614-3
Thelin, E. P., Nelson, D. W. & Bellander, B. M. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care 20, 217–229 (2014).
pubmed: 24146416 doi: 10.1007/s12028-013-9916-0
Lipcsey, M. et al. The brain is a source of S100B increase during endotoxemia in the pig. Anesth Analg 110, 174–180 (2010).
pubmed: 19897802 doi: 10.1213/ANE.0b013e3181c0724a
Zhang, L. N. et al. Diagnostic and Predictive Levels of Calcium-binding Protein A8 and Tumor Necrosis Factor Receptor-associated Factor 6 in Sepsis-associated Encephalopathy: A Prospective Observational Study. Chin Med J (Engl) 129, 1674–1681 (2016).
doi: 10.4103/0366-6999.185860
Feng, Q. et al. Characterization of Sepsis and Sepsis-Associated Encephalopathy. J Intensive Care Med 885066617719750 (2017).
Heming, N. et al. Neuroanatomy of sepsis-associated encephalopathy. Crit Care 21, 65 (2017).
pubmed: 28320461 pmcid: 5360026 doi: 10.1186/s13054-017-1643-z
Kapural, M. et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res 940, 102–104 (2002).
pubmed: 12020881 doi: 10.1016/S0006-8993(02)02586-6
Rosén, H., Sunnerhagen, K. S., Herlitz, J., Blomstrand, C. & Rosengren, L. Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49, 183–191 (2001).
pubmed: 11382525 doi: 10.1016/S0300-9572(00)00348-8
Hasselblatt, M. et al. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology 62, 1634–1636 (2004).
pubmed: 15136701 doi: 10.1212/01.WNL.0000123092.97047.B1
Yende, S. et al. Long-Term Quality of Life Among Survivors of Severe Sepsis: Analyses of Two International Trials. Crit Care Med 44, 1461–1467 (2016).
pubmed: 26992066 pmcid: 4949079 doi: 10.1097/CCM.0000000000001658
Hughes, C. G. et al. Relationships between markers of neurologic and endothelial injury during critical illness and long-term cognitive impairment and disability. Intensive Care Med 44, 345–355 (2018).
pubmed: 29523900 pmcid: 5870884 doi: 10.1007/s00134-018-5120-1

Auteurs

Long Wu (L)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Qing Feng (Q)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Mei-Lin Ai (ML)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Song-Yun Deng (SY)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Zhi-Yong Liu (ZY)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Li Huang (L)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China.

Yu-Hang Ai (YH)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China. ayhicu1978@126.com.
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China. ayhicu1978@126.com.

Lina Zhang (L)

Department of Critical Care Medicine, Xiangya Hospital of Centre-south University, Changsha, 410008, China. zln7095@126.com.
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China. zln7095@126.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH